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This discussion focuses on generative adversarial networks and adversarial attacks.

1 Generative Adversarial Networks
In the previous discussion, we focused on training generative models by directly maximizing the likelihood
of the inputs we observe in our training data. This week, we’ll consider an alternative method for training
generative models for high dimensional inputs that does not explicitly compute likelihoods, but will train
the generative model to fool a learned a learned discriminator network, which is being trained to distinguish
between real and generated inputs.

1.1 The GAN Game
For GANs, we will typically generate samples by first sampling vectors from some fixed noise distribution
Z ∼ p(Z), and then passing them through a (deterministic) generator function Gθ (parameterized by θ) to
obtain samples X̃ = Gθ(Z) ∼ pG(X̃).

Our discriminator will be a binary classifier Dφ (parameterized by φ), which will be trained to discriminate

between the generated samples X̃ and the true data distribution X ∼ p(X).

We can write view the training of GANs as solving a two-player game given by

min
Gθ

max
Dφ

= EX∼p(X)[logDφ(X)] + EX̃∼pG(X̃)[log
(

1−Dφ(X̃)
)

]

= EX∼p(X)[logDφ(X)] + EZ∼p(Z)[log
(
1−Dφ(Gθ(Z))

)
].

If we hold the generator Gθ fixed, then training the discriminator Dφ would be exactly the same as training
a normal binary classifer. If we hold the discriminator Dφ fixed, then training the generator is simply
optimizing the generator to generate samples that the discriminator thinks are valid inputs.

Note that this objective does not require us to compute the likelihoods pθ(x̃) for any generated image (or
any other image) under the generator’s distribution, which gives us more flexibility unlike our previously
covered latent variable models which required tractably computable log-likelihoods to train.

In practice, we optimize GANs by alternating taking gradient steps on the discriminator and generator,
rather than fully optimizing the discriminator before updating the generator as this minimax game suggests.

1.2 GANS with the “perfect” discriminator
To gain intuition for what training a GAN should do, we consider an idealized setting where our discriminator
is infinitely expressive and is fully optimized to convergence for every generator update.

In this case, for any input x and fixed generator G, the optimal discriminator D∗ assigns probability

D∗(x) =
p(x)

p(x) + pG(x)
.

Problem 1: Optimal Discriminator

Show that the optimal discriminator probability D∗(x) is given by the expression above.

CS 182/282A, Spring 2021, Discussion 11 1



We can substitute this optimal discriminator into our two player game and reduce to a single optimization
over the generator Gθ as

min
Gθ

EX∼p(X)

[
log

(
p(X)

p(X) + pG(X)

)]
+ EX̃∼pG(X̃)

log

(
pG(X̃)

p(X̃) + pG(X̃)

) .
Defining q(x) = p(x)+pG(x)

2 , then we can rewrite the objective as

min
Gθ

EX∼p(X)

[
log p(X)− log q(X)

]︸ ︷︷ ︸
DKL(p(x)‖q(x))

+EX̃∼pG(X̃)

[
log pG(X̃)− log q(X̃)

]
︸ ︷︷ ︸

DKL(pG(x)‖q(x))

+constant.

We recognize this objective as being (up to the additive constant that doens’t matter for optimization)
to precisely be the Jensen-Shannon divergence between the true data distribution p(X) and the generator
distribution pG(X̃). This shows that in the ideal setting with a perfect discriminator, training a GAN
does in fact optimize the generator distribution to be close to the data distribution (as measured by the
Jensen-Shannon divergence).

1.3 Training GANs in Practice
Of course, we will generally not find the optimal discriminator (due to computational limitations and repre-
sentational limitations on the discriminator architecture), so we will generally not precisely be minimizing
the Jensen-Shannon divergence when training GANs. It also turns out that having a perfect discriminator
and directly trying minimize the Jensen-Shannon can be very undesirable for training GANs. In Figure 1,
we see that the ideal discriminator values (red) are essentially constant on all the generated data, so the
gradient for the generator would be extremely small, which can make optimizing the generator extremely
slow.

Figure 1: Perfect discriminator values (red line) with real (blue) and generated (orange) inputs in a 1D
example. The generator will have very little gradient signal on how to improve, making this discriminator
undesirable.

The key idea to improve GAN training is that we don’t actually care how well the discriminator does by
itself, but rather we only care that it provides a useful signal to improve the generator. A common way
we can accomplish this is to restrict the expressivity of discriminator, often by enforcing some additional
smoothness condition. As we see in Figure 2, the smoother discriminator values in green can provide a more
useful learning signal for the generator.

Wasserstein GANs (which motivate imposing a Lipschitz constraint on the discriminator as minimizing
the Wasserstein distance between the generator and real data distributions), gradient penalty GANs, and
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Figure 2: A discriminator constrained to be Lipschitz continuous (green line) with real (blue) and generated
(orange) inputs in a 1D example. The generator can now follow the slope of the green line to move generated
samples towards the real data.

spectral normalized GANs all enforce different notions of smoothness on the discriminator in order to make
learning the generator easier.

Other tricks to avoid vanishing gradients include using real-valued discriminators like in Least-squares GAN
(which turns out to be equivalent to minimizing the Pearson χ2 divergence under ideal settings), and instance
noise, which adds noise to the inputs to smooth out the densities of both the real and generated data
distributions, improving the learning signal.

1.3.1 Techniques for Lipschitz Continuity

Recall from lecture that we can the Wasserstein distance W (p, pG) as

W (p, pG) = sup
‖f‖L≤1

EX∼p(X)[f(x)]− EX̃∼pG(X̃)[f(x)],

where f is restricted to be a 1-Lipschitz function. The original WGAN paper suggested approximating
f (analagous to the discriminator) with a neural network parameterized by φ and enforcing a Lipschitz
constraint by clipping the each entry of the weights φ to have magnitude less than ε. While this weight
clipping will ensure that the discriminator fφ is K-Lipschitz for some K, but the exact constant K would
depend on the architecture and can be a bit complicated to compute.

Another more elegant way to enforce Lipschitz continuity via gradient penalties. Here, we add an ad-
ditional term λ(

∥∥∇xf(x)
∥∥
2
− 1)2 to our loss for the discriminator, directly encouraging the norm of the

gradients to have norm close to 1. While this doesn’t strictly enforce 1-Lipschitzness due to it only being a
soft penalty on the gradient norm, it is effective and commonly used.

Finally, spectral normalization can be used to strictly enforce a 1-Lipschitz constraint on the discriminator
fφ. We first note that if two functions f, g are L1 and L2 Lipschitz respectively, then their composition f ◦ g
is L1L2-Lipschitz, and we can extend this to any finite composition of Lipschitz functions.

Problem 2: Composition of Lipschitz Functions

If f, g are L1, L2 Lipschitz functions, then prove their composition f ◦ g is L1L2-Lipschitz.

We then note typical neural nets can be written as compositions of functions fn ◦ σ ◦ . . . , σ, f1, where σ rep-
resents the nonlinear activation functions and fi are some affine layer parameterized by (Wi, bi). Therefore,
one way to ensure fφ is 1-Lipschitz is by ensuring each fi and σ are all 1-Lipschitz.

We can easily verify that the ReLU activation is 1-Lipschitz (as it is either constant with slope zero or
linear with slope 1), so all that remains is to enforce that each linear layer fi is 1-Lipschitz. Clearly, the
Lipschitzness of fi does not depend on the bias parameter bi, so we only need to consider the Lipschitzness of
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the function g(x) = Wix. The Lipschitz constant K of the linear function g can be written as the supremum

sup
‖x‖2=1

‖Wix‖2,

which we recognize to be the spectral norm σ(Wi) (the largest singular value of Wi). Thus, a simple
way to enforce 1-Lipschitzness for each linear layer (and thus the whole network) is to simply renormalize
Wi ← Wi

σ(Wi)
after each gradient update, as the spectral norm σ(Wi) is fairly straightforward and cheap to

compute.
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2 Adversarial Examples
Adversarial examples are inputs that are specially chosen or constructed to fool a model. One reason we
study adversarial examples is that they directly offer ways to exploit our learned models. As a real world
example, we can imagine someone modifying a stop sign in order to fool a self-driving car system into not
stopping, which can potentially lead to crashes.

In this section, we will discuss some common formulations for adversarial attacks, strategies for constructing
these adversarial examples, and techniques for mitigating adversarial attacks.

2.1 Formulation
One common way we formulate adversarial attacks is by allowing an additive perturbation δ to a real image
x, while restricting the size of the perturbation by enforcing ‖δ‖ < ε for some choice of size ‖·‖ and some
budget ε. Intuitively, the idea here is that we would like the adversarial examples to be imperceptible to
humans and to not change the “true” label, hence the restriction on how much we are allowed to perturb
the real input.

To find an adversarial example for some particular loss function and model specified by θ, we want to fool
the model (by forcing it to have high loss) by solving the constrained problem

δ∗∗ = arg max
δ

Lθ( x+ δ︸ ︷︷ ︸
perturbed input

, y︸︷︷︸
original label

)

s.t‖δ‖ ≤ ε,

and take x′ = x + δ∗ as our adversarial example. For images, common choices of the norm ‖·‖ include the
∞-norm ‖δ‖∞ = maxi |δi| or the usual 2-norm ‖δ‖2 =

√∑
i δ

2
i .

Finally, we note that this definition, while providing a formal definition of adversarial attacks that is rea-
sonable to analyze, does not necessarily align well with adversarial examples in the real world. Real world
adversaries are not necessarily limited in how much they perturb the input (at least, often not limited in
precisely the way we assume in this formulation).

2.2 Adversarial Attack Strategies
We first consider white-box attacks, where we assume the adversary has full access to our model θ. In
particular, we assume the adversary can compute gradients ∇xLθ(x, y), The attacker can then solve the
constrained problem with standard first-order constrained optimization techniques like dual gradient ascent
to find the optimal perturbation δ∗.

We can also construct much simpler attacks with the fast gradient sign method (FGSM). Instead of
solving for the optimal δ∗ exactly, which can be somewhat computationally expensive, we instead make a
first-order approximation to the loss as

L′θ(x+ δ, y) ≈ Lθ(x, y) +∇xLθ(x, y)T δ.

Using our linearized loss L′ instead of the true loss L, we can then easily construct the optimal δ∗ using only
one gradient evaluation and often a closed form solution for the optimal δ∗.

For example, the optimal solution for a 2-norm constraint would result in the perturbation

δ∗ = ε
∇xLθ(x, y)∥∥∇xLθ(x, y)

∥∥
2

.

For an ∞-norm constraint of ε, the optimal perturbation is given by

δ∗ = ε sign(∇xLθ(x, y)),
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hence why this simple attack is known as the fast gradient sign method.

Problem 3: FGSM optimal perturbation

Show that the optimal perturbation δ given a linear loss and ∞-norm constraint is given by the
expression above.

In practice, this simple method is very fast and convenient, works well against standard neural networks,
but can often be defeated by simple defenses.

We can also consider black-box attacks, which do not assume access to the internal workings of the model
θ, but instead only observes the model’s predictions. Without access to gradients, we can no longer directly
run first-order optimization algorithms for the FGSM, as those required taking the gradient of the loss
with respect to the input. However, in black box settings, we can still estimate the gradient with a finite
differences approach.

Recalling that the (single variable) derivative f ′(x) is defined as the limit limε→0
f(x+ε)−f(x)

ε , a simple finite
differences method estimates gradients by taking small perturbations in each dimension to the input and
seeing how the loss changes to approximate that coordinate of the derivative. In practice, this allows us to
approximate the gradient with only a moderate number of queries to the model, which we can then use to
run our adversarial attacks.

Another way we can construct black box attacks is to learn our own model, perform a white box attack
on our own model, and reuse the generated adversarial image to attack the target model. It turns out this
strategy often works quite well, and relies on the two models having similar gradients with respect to the
input.

2.3 Adversarial Defense
There are many techniques for detecting adversarial examples or making models robust to them. One
common way to robustfy networks to adversarial attacks is to incorporate adversarial attacks into the training
procedure via a robust loss function, which we refer to as adversarial training.

Instead of finding the optimal parameter θ∗ = arg min θ
∑
x,y∈D Lθ(x, y) we instead minimize the robust loss

θ∗ = arg min
θ

∑
x,y∈D

max
‖δ‖≤ε

Lθ(x+ δ, y).

Thus, we are explicitly training our network to be robust to the type of attack we expect at test time.

However, adversrial training does come with its drawbacks. Computing the adversarial attack for each
input at every training step can slow down training, and often times decreases the accuracy on clean data.
Additionally, adversarial training with respect to a certain perturbation constraint does not necessarily
generalize to other perturbations.
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Problem 4: Adversarial Robustness to Other Pertubations

Suppose we are training a model to classify whether or not there is a stop sign in an image, and our
training set consists only of images taken during the day. We use adversarial training to be robust to
perturbations δ satisfying ‖δ‖∞ ≤ 0.5, and verify that our model robustly generalizes well with this
perturbation. Which of the following different perturbation sets should we expect our model to also
be robust to?

1. {δ : ‖δ‖∞ ≤ 0.1}

2. {δ : ‖δ‖∞ ≤ 1.0}

3. {δ : ‖δ‖2 ≤ 0.5}

4. {δ : ‖δ‖2 ≤ 1.0}

5. Images of stop signs at night, with much dimmer lighting.

CS 182/282A, Spring 2021, Discussion 11 7


	Generative Adversarial Networks
	The GAN Game
	GANS with the ``perfect'' discriminator
	Training GANs in Practice
	Techniques for Lipschitz Continuity


	Adversarial Examples
	Formulation
	Adversarial Attack Strategies
	Adversarial Defense


