
CS 182/282A Designing, Visualizing and Understanding Deep Neural Networks
Spring 2021 Sergey Levine Discussion 2

This discussion will first talk about the bias-variance tradeoff and go through an example to illustrate
how regularization can affect the bias and variance. We will then go over a review of notation in
vector/matrix calculus that we will need to understand backpropagation, and then finally review
several optimization algorithms covered in lecture.

1 Bias-Variance Tradeoff
1.1 Intuitive Understanding of Bias-Variance Tradeoff
First, recall the definitions of bias and variance from last discussion,

Definition 1 (Bias of an Estimator). The bias of an estimator is a measure of how much does the expected
value of the estimator differ from the true target. Suppose we have a randomly sampled training set D, and
we select an estimator denoted θ = θ̂(D). Then, for a particular test input x, the bias of our estimator’s
prediction on x is given as Bias(fθ(x)) = Ey∼p(y|x),D[fθ(x) − y]. The variance of an estimate is a measure
of how much the estimate differs from the expected value of the estimate, and is given by Var(fθ(x)) =
ED[(fθ(x)− ED[fθ(x)])2].

In supervised learning, our goal is to learn a function that does well in terms of the true risk. However, we
generally do not know the true distribution and only have access to a dataset of samples from the distribution,
and instead learn by minimizing the empirical risk (often with an additional regularization term) instead.

Even though we cannot directly optimize the risk, we can still attempt to better understand sources of
error in our estimation. In particular, when our loss is the squared error, we can derive the bias-variance
decomposition of the MSE. Specifically, we will find that the MSE estimator is exactly to the variance of the
estimator plus the square of its bias (and an irreducible error).

Intuitively, the bias and variance can be summarized by the following graphic:

Figure 1: A visual explanation of the bias and variance. Figure from [?].

CS 182/282A, Spring 2021, Discussion 2 1

Here, notice that when there is a high variance, the estimates are more spread out, but when there is a high
bias, we see a general deviation away from our target. The best estimates are those with low variance and
low bias since they mostly hit the target.

1.2 Bias-Variance Tradeoff Mechanics
Problem 1: Deriving Bias-Variance Tradeoff

Suppose we have a randomly sampled training set D (drawn independently from our test data), and

we select an estimator denoted θ = θ̂(D) (for example, via empirical risk minimization).
Show that we can decompose our expected mean squared error for a particular test input x into a
bias, a variance and an irreducible error term as below:

EY∼p(y|x),D[(Y − fθ̂(D)(x))2] = Var(fθ̂(D)(x)) + Bias(fθ̂(D)(x))2 + σ2

You may find it helpful to recall the formulaic definitions of Variance and Bias, reproduced for you
below:

Var(fθ̂(D))(x) = ED
[
(fθ̂(D)(x)− E[fθ̂(D)(x)])2

]
Bias(fθ̂(D)(x)) = EY∼p(Y |x),D[fθ̂(D)(x)− Y]

We have now decomposed our test risk into a bias, variance and irreducible error term. As there is nothing
we can do about the irreducible error, this tells us that we need to choose the learning algorithm and/or

hyperparameters θ̂(·) in order to simultaneously achieve low bias and low variance. The next two questions

will show how the choice of estimator θ̂ can influence bias and variance. In particular, we will see that `2
regularization in linear regression can provide a tradeoff between bias and variance.

Problem 2: Deriving Bias and Variance of Linear Regression Models

Our dataset consists of D = {(xi, yi)}ni=1. We let the label vector Y = Xθ + ε where θ is the true
linear predictor and each noise variable εi is i.i.d. with mean 0 and variance 1. We use the ordinary
least squares model. Calculate the bias and covariance of the θ̂ estimate and use that to compute the
bias and variance of the prediction at particular test inputs x. Recall that the OLS solution is given
by

θ̂ = (X>X)−1X>Y,

where X ∈ Rn×d is our (nonrandom) data matrix, Y ∈ Rd is the (random) vector of training targets.
For simplicity, assume that X>X is diagonal (we could have applied an orthogonal transformation
to make this the case), or for an even simpler problem that doesn’t require linear algebra, assume
X ∈ Rn×1, making X>X simply a scalar value.

Problem 3: Deriving Bias and Variance of Linear Regression Models (Challenge)

What happens to the bias and variance if we instead use an `2 regularized estimator

θ̃ = (X>X + λI)−1X>Y ?

CS 182/282A, Spring 2021, Discussion 2 2

2 Vector and Matrix Calculus Review
In this section, we review vector and matrix calculus, and formalize the notation we will use. These notations
will be required to understand backpropagation in the next lectures. Henceforth, we will denote scalars with
lowercase letters (e.g., x), vectors with bolded lowercase letters (e.g., x) and matrices with upper case letters
(e.g., X). We will use similar conventions for functions depending on the shape of its output (e.g., g(·)
denotes a function with a vector valued output).

Gradients with respect to vectors We first define the gradient of a scalar function with respect to a
vector input. Suppose we have a function f : Rd → R, which maps a d-dimensional vector to a scalar. Then
we define the gradient of f at a particular input x to be a column vector (the same shape as the input)
consisting of partial derivatives at x:

∇xf(x) =

∂f
∂x1

(x)
...

∂f
∂xd

(x)

 .
We note that this choice of notation (laying out gradients to be the same shape as input) is not universally
used; you will often find sources using the opposite convention (especially in mathematics) with gradients
as row vectors (and Jacobians will be the transpose of what we describe next). However, we will use
this convention for deep learning because it is intuitive (for example, in gradient descent, we often write
θ ← θ − α∇L(θ), which only makes sense when θ and ∇L(θ) are the same shape) and because it is easily
extended to gradients for matrices and higher dimensional arrays.

Problem 4: Gradient of squared `2 norm

Suppose we have a vector x ∈ Rd, and let f(x) = ‖x‖22 = x>x. Compute the gradient ∇f(x).

Jacobians We now consider the case where f : Rn → Rm has vector valued inputs and outputs. Let
fi : Rn → R be the function that outputs the ith component of f. Then, we can view our Jacobian (which
we shall denote as ∂f

∂x) as stacking together the gradients of fi for i ∈ {1, . . . ,m}. That is, the Jacobian ∂f
∂x

will be an n×m matrix with entries given by(
∂f

∂x

)
ij

=
∂fj
∂xi

.

Problem 5: Jacobian of a linear map

Suppose we have a vector x ∈ Rd and a matrix A ∈ Rd×n. Let f(x) = A>x ∈ Rn. Compute the
Jacobian of f with respect to x.

Multivariate Chain Rule We first recall the basic chain rule when everything is scalar valued. Suppose
we have an input x, compute y = g(x), then compute z = f(y). Then the chain rule says

∂z

∂x
=
∂y

∂x

∂z

∂y
.

Now let’s consider the case where y is vector valued in Rn (x and z remain scalars). Summing over the

CS 182/282A, Spring 2021, Discussion 2 3

contributions of each entry of y, we see ∂z
∂x is now a scalar given by

n∑
i=1

∂yi
∂x

∂z

∂yi
.

Finally, let’s consider the case when x is also a vector in Rm. From our calculation with scalar x and vector
y, we know the jth entry of ∂z

∂x is given by the partial derivative

∂z

∂xj
=

n∑
i=1

∂z

∂yi

∂yi
∂xj

.

Stacking together the entries ∂z
∂xj

into a vector, we see that the gradient of the output z with respect to x is

given by the product of the Jacobian matrix of y with respect to x and the gradient of z with respect to y:

Rm︷︸︸︷
∂z

∂x
=

Rm×n︷︸︸︷
∂y

∂x

Rn︷︸︸︷
∂z

∂y
.

Problem 6: Combining the two previous calculations with the chain rule

Suppose we have a vector x ∈ Rd and a matrix A ∈ Rd×n. Let g(x) = A>x ∈ Rn, and let f(y) = ‖y‖22.
Compute the gradient of f(g(x)) with respect to x.

Gradients with respect to matrices and higher dimensional arrays Now suppose we have a function
f : Rd1×d2 → R, which maps a d1 by d2 matrix to a scalar. We will again define the gradient at a particular
input matrix X to be a matrix of the same shape as X, consisting of the partial derivatives with respect to
each entry of the matrix.

∇Xf(X) =

∂f
∂X11

. . . ∂f
∂X1,d2

...
. . .

...
∂f

∂Xd1,1
. . . ∂f

∂Xd1,d2

 .
Similarly, we can generalize this convention of having the gradient match the shape of the input when our
input were higher dimensional arrays (e.g. in the weights of a convolutional layer).

We can define a version of a Jacobian for vector-valued functions with matrix inputs that preserves the
matrix dimensions (similarly for higher dimensional arrays as well). Suppose f : Rd1,d2 → Rn, then we can
define the Jacobian to be a rank-3 tensor (an array with 3 indices) in Rd1×d2×n with each entry given by(

∂f

∂X

)
ijk

=
∂fk
∂Xij

.

We will now go through the chain rule calculation again, this time with a matrix input. Suppose X ∈ Rd1,d2 ,
y = g(X) ∈ Rn and z = f(y) ∈ R. Again, we have that the partial derivative with respect to each entry of
the matrix Xij is given by

∂z

∂Xij
=

n∑
k=1

∂z

∂yi

∂yi
∂Xij

.

CS 182/282A, Spring 2021, Discussion 2 4

Similarly to the vector input case, we can again succinctly write out the full gradient with respect to the
matrix X as

Rd1×d2︷︸︸︷
∂z

∂X
=

Rd1×d2×n︷︸︸︷
∂y

∂X

Rn︷︸︸︷
∂z

∂y
.

Note that the product of the rank-3 tensor (or 3-dimensional array) and vector can be a seen as a general-
ization of a matrix vector multiplication. Multiplying a matrix X ∈ Rm×n by a vector y ∈ Rn results in a
vector in Rm where each entry is the inner product of a row of X with y. The product of a rank-3 tensor
A ∈ Rd1×d2×n with a vector b ∈ Rn then forms a d1 × d2 matrix, where each entry is the inner product of a
”row” of A and b.

We also note that this calculation of the gradient with respect to a matrix X is equivalent to first flattening
X to a vector, computing the gradient with respect to the flattened X using the previous multivariate chain
rule for vectors, and then reshaping the gradients back to match the original matrix shape of X.

Problem 7: Revisiting with a matrix derivative instead

In problem 5, we computed the gradient of z =
∥∥A>x

∥∥2
2

with respect to x. We will now repeat this
exercise, but instead compute the gradient with respect to A.
Suppose we have a vector x ∈ Rd and a matrix A ∈ Rd×n. Let g(A) = A>x ∈ Rn, and let

f(y) = ‖y‖22. Compute the gradient of f(g(A)) with respect to A.

Finally, as a matter of notation, note that the way we order derivatives in our chain rule (with the final
output on the rightmost side) is again a result of our chosen convention for gradients and Jacobians. You
may notice in other texts that the chain rule is written in the reversed order using a different convention for
Jacobians.

CS 182/282A, Spring 2021, Discussion 2 5

3 Optimization methods
To perform empirical risk minimization, we need to choose an algorithm to compute the optimal parameters
for the empirical risk. In deep learning, we almost always use methods based off stochastic gradient descent
due its scalability (both in terms of dataset size and model size), and we’ll go through and review several
optimization methods as introduced in lecture.

3.1 Gradient Descent
For all our algorithms, we assume we can compute the gradients of our loss function for each data point
∇θL(xi, yi,θ). The negative gradient of a function gives the steepest descent direction; that is, the direction
we should move in order to decrease the loss most quickly if we moved an infinitesimally small amount.

Given this, the most natural method for minimizing our training loss is to iteratively compute the gradient
for the entire dataset D, and update our parameter some small amount in that direction. This leads to the
(batch) gradient descent algorithm which computes iterates as

θt+1 = θt − α

|D|
∑

xi,yi∈D
∇θL(xi, yi,θ

t),

where α is a fixed scalar known as the step size. However, this naive algorithm requires us to take the average
gradient over the entire training dataset for each iteration, which can be too slow for larger datasets.

3.2 Stochastic Gradient Descent (SGD)
In order to speed up gradient descent, we can instead sample a random subset of the dataset for each
iteration, leading to the (minibatch) stochastic gradient descent algorithm. The gradient estimate at
each iteration is now noisy (with the amount of noise depending on the minibatch size), but is an unbiased
estimator for the true gradient and can still provide useful directions to update our parameters. Compared
to batch gradient descent, we are trading off variance in the gradients for much faster gradient computation
that does not need to scale with the dataset size. While extra noise can mean it requires more iterations to
converge, the faster individual iterate time can more than offset the cost.

The SGD algorithm proceeds exactly as the gradient descent algorithm, only replacing the full training set
D with a new random minibatch Bt for each iteration

θt+1 = θt − α

|Bt|
∑

xi,yi∈Bt

∇θL(xi, yi,θ
t) Bt ⊆ D.

All algorithms below are all compatible with stochastic gradients, so for notational convenience, we will now
denote the (possibly stochastic) gradient estimate at iterate t to simply be ∇L(θt). The new SGD/GD
update in this notation would simply be

θt+1 = θt − α∇L(θt).

3.3 When does gradient descent work poorly?
We’ll first understand when gradient descent fails for a very simple convex problem, which will motivate
different extensions. We consider a simple quadratic loss function f(x1, x2) = a1x

2
1 + a2x

2
2 and we’ll look at

the behavior of GD for different settings of the loss parameters a1, a2.

Gradient descent can work well when f is “nice” in some sense (which we’ll refer to as being well-conditioned),
which will be the case if a1 and a2 are similar in magnitude. We see this in Figure 2a, where the direction
of gradient always aligns closely with the direction of the optimum, and GD can work with a fairly large
learning rate to make quick steady progress to the optimum.

In Figures 2b and 2c, we consider an “ill-conditioned” problem where a2 � a1. In Figure 2b, with the same
learning rate as before, the gradients tend to have a much larger vertical component than horizontal, and

CS 182/282A, Spring 2021, Discussion 2 6

the iterates now oscillate greatly along the vertical axis and diverge. If we use a much smaller learning rate
in Figure 2c, we are able to stabilize the parameter updates in the vertical axis, but we end up making much
slower progress to the optimum along the horizontal axis.

Thus, when our iterates are forced to always move in the direction of the gradient, we can have situations
where either the iterates are very unstable, or our learning rate is so small that we make very slow progress.
To address this pathology, we shall now examine different methods which do not update the parameters
exactly in the direction of the gradient, but instead modifies the direction based on past gradients seen.

(a) With a large learning rate, GD
on this well-conditioned problem
makes fast steady progress towards
the optimum.

(b) With a large learning rate, GD
on this ill-conditioned problem os-
cillates and diverges in the vertical
direction.

(c) With a small learning rate, GD
on this ill-conditioned problem re-
mains stable, but makes very slow
progress towards the optimum.

Figure 2: Different behaviors of gradient descent on different problems and with different learning rates.

3.4 SGD with momentum

Figure 3: Effect of using momentum on the ill-conditioned quadratic problem. SGD with momentum quickly
realizes that all the gradients consistently point towards the right, so it “gains momentum” and moves faster
along that direction over time. On the other hand, the alternating vertical gradients tend to cancel out over
the past iterations, damping the amount of vertical oscillation. This way, the iterates make quick progress
toward the optimum along the horizontal direction, while not diverging along the vertical axis.

One way to help alleviate this problem is to accumulate gradient information across previous iterates in
order to damp the oscillations and focus on the directions where we have consistently been moving in. In
the example in the left of Figure 2b, we notice that each gradient consistently moves the iterate towards the
right (towards the optimum), while alternating iterations have gradients point in different directions along

CS 182/282A, Spring 2021, Discussion 2 7

the vertical axis. If we average the past gradients using momentum (Figure 4), we see that the vertical
components of the gradient will tend to cancel out and stabilize, allowing the horizontal movement towards
the right to dominate and lead us to the optimum more quickly. In the stochastic gradient setting, momentum
can also reduce the impact of noise, again by smoothing out the oscillations int he gradient direction incurred
by the random data sampling.

Concretely, the momentum method (the particular variant we use is also called the heavy-ball method) keeps
a moving average of our gradients, weighting more recent gradients more heavily, and updates our iterate in
the direction of the weighted average. The iterates proceed as

vt = mvt−1 + ∇L(θt)

θt+1 = θt − αvt.

Here vt is our accumulated gradient vector, m controls how much we remember the past gradients, and α is
our step size as before.

3.5 RMSProp and Adagrad

Figure 4: Effect of using adaptive learning rates on the ill-conditioned quadratic problem. In this case, we
use RMSProp, which is able to rescale the different parameter updates to make fast progress to the optimum
instead of oscillating as regular gradient descent did.

Adaptive learning rate methods, which include RMSprop and Adagrad, are an alternative approach towards
selecting a better direction based on rescaling the different components of the gradient to form a new
direction. One issue we notice with the ill-conditioned loss in the previous figures is that the loss is much more
sensitive along the vertical axis than the horizontal one, and that the extreme sensitivity along the vertical
axis was what forced us to use a small learning rate for gradient descent. Intuitively, if we could decouple
learning rates for each coordinate and rescale our updates to place more importance on the horizontal
direction, we would move much faster towards the optimum.

Concretely, both RMSProp and Adagrad do this individual rescaling by estimating a vector st that tracks
the “size” of the past gradients in each dimension. They both update the kth coordinate of the parameters
according to

θt+1
k = θtk −

α√
stk + ε

∇θkL(θt),

where ε is a small constant for numeric stability (to avoid dividing by zero).

CS 182/282A, Spring 2021, Discussion 2 8

RMSProp and Adagrad differ in how they update st:

stk = βst−1k + (1− β)(∇θkL(θt)2 RMSProp

stk = st−1k + β(∇θkL(θt))2 Adagrad

RMSProp keeps a running average of per dimension gradient magnitudes, while Adagrad keeps a sum.
Thus, for Adagrad, the vector st monotonically increases over time, causing the effective learning for each
coordinate to decrease monotonically.

3.6 Adam and other algorithms
Adam is a popular optimizer in deep learning that essentially combines the adaptive learning rates of RM-
SProp with momentum.

For additional information about these optimization methods (as well as numerous others), here’s a blog post
with a list of popular optimization methods for deep-learning: http://ruder.io/optimizing-gradient-descent/

CS 182/282A, Spring 2021, Discussion 2 9

http://ruder.io/optimizing-gradient-descent/

	Bias-Variance Tradeoff
	Intuitive Understanding of Bias-Variance Tradeoff
	Bias-Variance Tradeoff Mechanics

	Vector and Matrix Calculus Review
	Optimization methods
	Gradient Descent
	Stochastic Gradient Descent (SGD)
	When does gradient descent work poorly?
	SGD with momentum
	RMSProp and Adagrad
	Adam and other algorithms

