
CS 182/282A Designing, Visualizing and Understanding Deep Neural Networks
Spring 2021 Sergey Levine Discussion 3

This discussion will cover some practice applying backpropagation, and introduce the convolution
operator.

1 Mechanical Backpropagation
In this section, we will work through some calculations used during backpropagation.

Recall the softmax function p : Rk → Rk, with entries given by

pi(z) =
ezi∑k
j=1 e

zj
.

Each entry pi corresponds to the probability assigned to the label i. We derived in Discussion 1 that the
partial derivatives of pi(z) for each entry of z is given by,

∂pi(z)

∂zj
=

{
pi(z)(1− pj(z)) if i = j

−pi(z)pj(z) if i 6= j

= pi(z)(δij − pj(z)).

We can then concicsely write the full gradient with respect to z as

∇pi(z) = pi(z)(ei − p(z)),

where ei is the unit vector with 1 at index i and 0 elsewhere.

In this example, we will maximize the log-likelihood of the given labels in our dataset, which motivates the
following loss for a multiclass logistic regression model.

L(x, y,W,b) = − log py(Wx + b).

Problem 1: Gradient with respect to linear layer parameters

Utilize the chain rule to compute the gradient of L(x, y,W,b) with respect to W and b.

CS 182/282A, Spring 2021, Discussion 3 1



Solution 1: Gradient with respect to linear layer parameters

Let z = Wx + b. Given we already know ∇pi(z), we first compute ∇ log pi(z) as

∇ log pi(z) =
∇pi(z)

pi(z)

= ei − p(z).

We note that since our loss is the negative log likelihood, we will need to flip the sign of our gradient.
We first consider the gradient of the loss with respect to the bias b. Notice that,

∂zi
∂bj

= δij ,

and so the Jacobian ∂z
∂b is simply the identity matrix. Utilizing the chain rule to compute the gradient

with respect to the bias, we have

∇bL = − ∂z
∂b

∇z log py(z)

= −I∇z log py(z)

= −∇z log py(z)

= p(z)− ey.

Now, we consider the partial derivatives of z with respect to W .

∂zk
∂Wij

= δikxj .

Noting that the derivative with respect to Wij depends only on the i’th entry of z, we compute

∂L

∂Wij
=
∂L

∂zi
xj

∂L

∂W
= −∇z log py(z)xT

= (p(z)− ey)xT .

Suppose now that we had a multilayer neural network and W,b were the the parameters of the last layer of
the network. To compute gradients of the earlier parameters of the network with backpropagation, we also
need to compute the gradient of the loss with respect to x and pass it backwards.

Problem 2: Gradient with respect to input

Utilize the chain rule to compute the gradient of L(x, y,W,b) with respect to x.

CS 182/282A, Spring 2021, Discussion 3 2



Solution 2: Gradient with respect to input

We can again compute

∂L

∂xj
=

k∑
i=1

∂L

∂zi

∂zi
∂xj

=

k∑
i=1

∂L

∂zi
Wij .

Vectorizing, we obtain

∂L

∂x
= −WT∇z log py(z)

Having computed these, one then simply needs to also compute the backwards pass through the chosen
activation function to able backpropagate through fully-connected feedforward networks!

We’ll now move on to a slightly more complicated example of backpropagation involving a skip connection,
which you’ll see again when we cover ResNets.

Problem 3: Gradient in a nonlinear computation graph

Suppose we have y = W2σ(W1x)+x, where σ is the ReLU activation. Letting δy denote the gradient
of the loss with respect to y, compute the gradient of the loss with respect to x.

Solution 3: Gradient in a nonlinear computation graph

y here is that x now contributes to y both through the W2σ(W1x) (the usual feedforward pass) and
the x term (the skip connection).
We’ll first go tthrough the contribution to the gradient from the feedforward pass. Let z = W1x and
a = σ(W1x). From our earlier calculations, we see that

∂L

∂a
= WT

2 δy.

We now need to backpropagate through the ReLU activation. Let R(z) denote the diagonal matrix
such that R(z)ii = 1 if zi > 0 and 0 otherwise. We see that the backward pass through the ReLU
activation simply multiplies the post-activation gradient by R(z), and so we have

∂L

∂z
= R(z)

∂L

∂a

= R(z)WT
2 δy.

Finally, we can compute the feedforward pass’s contribution to ∂L
∂x as

WT
1

∂L

∂z
= WT

1 R(W1x)WT
2 δy.

To handle the two different paths through to the output, we simply need to sum each gradient
contribution, so our final gradient is

∂L

∂x
= WT

1 R(W1x)WT
2 δy + δy.

CS 182/282A, Spring 2021, Discussion 3 3



2 Convolutional Neural Networks
Convolutional neural networks1 (CNN) are a type of neural network architecture that have become the key
ingredient for state of the art modern computer vision performance.

They perform operations similar to feed-forward neural networks that we have discussed, but explicitly
account for spatial structure in the data, and so are very common for computer vision tasks where inputs
are images. That said, CNNs can also be applied to non-image data with similar structure in the input, such
as time series or text data (in which case they’re takign advantage of temporal structure).

2.1 Convolution (Cross-Correlation) Operator
At the heart of CNNs is the convolution operator. In this discussion, what we refer to as a convolution is
actually the cross-correlation operator here instead, which is the exact same but with the indexing of the
weights in w inverted. For example, “convolutional” layers in the deep learning library Pytorch are also
actually cross-correlations instead, and homework 1 will also similarly have you implement cross-correlation
instead of the actual convolution.

To motivate the use of convolutions, we will work through an example of a 1-D convolution calculation to
illustrate how convolutions work over a single spatial dimension. Suppose we have an input x ∈ Rn, and
filter w ∈ Rk. We can compute the convolution of x ?w as follows:

1. Take your convolutional filter w and align it with the beginning of x. Take the dot product of w and
the x[0 : k−1] (using Python-style zero-indexing here) and assign that as the first entry of the output.

2. Suppose we have stride s. Shift the filter down by s indices, and now take the dot product of w and
x[s : k − 1 + s] and assign to the next entry of your output.

3. Repeat until we run out of entries in x.

Below, we illustrate a 1D convolution with stride 1.

Input vector x∈Rn︷ ︸︸ ︷

x1

...
xk
...
xn


?

Convolutional filter w∈Rk︷ ︸︸ ︷
w1

...
wk

 =

Output vector y∈Rn−k+1︷ ︸︸ ︷
∑k

i=1 wixi∑k
i=1 wixi+1

...∑k
i=1 wixi+n−k


We see that the output vector is smaller than the input vector (Rn−k−1 compared to Rn). A common way
to address this is zero-padding, in which we append zeros on both ends of the input vector before applying
the convolution (note that there are other conventions for zero-padding as well).

Often, we’ll be dealing with multiple spatial dimensions (2 spatial dimensions in the case of images). In this
case, we would need to slide our filter along all spatial dimensions to construct the output.

1Recommended reading: http://cs231n.github.io/convolutional-networks/

CS 182/282A, Spring 2021, Discussion 3 4

http://cs231n.github.io/convolutional-networks/


Problem 4: Test your know knowledge of convolution dimensions

In this problem, we will run a series of convolution-related operations to better understand how
dimensions are affected by convolutions.

1. Suppose you have a 32× 32× 3 image (a 32× 32 image with 3 input channels). What are the
resulting dimensions when you convolve with a 5× 5× 3 filter with stride 1 and 0 padding?

2. What if we zero-pad the input by 2?

3. Suppose we now stack 10 of these 5×5×3 filters and continue to zero pad the input by 2. What
is the new shape of the output, and how many parameters are in our filters (not including any
bias parameters)?

4. What would be the spatial dimensions after applying a 1 × 1 convolution? Think about what
this does.

Solution 4: Test your know knowledge of convolution dimensions

1. The resulting spatial dimensions are 28× 28 (with one output channel).

2. The resulting spatial dimensions are 32 × 32, so we have preserved the same size as the input
image.

3. The resulting outputs are 32 × 32 × 10, with 10 output channels. There are 5 · 5 · 3 = 75
parameters per filter, so with 10 filters, we have 750 parameters in this layer. Note that, if we
did choose to include a bias parameter, then there would be 76 parameters per filter, and so
760 in total.

4. A 1 × 1 convolution does not change the spatial dimensions. For every spatial location, it
performs a linear map of the the input channels pointwise over space. In practice, this is useful
for changing the number of channels.

2.2 Convolutions as Matrix Multiplication
We note that convolutions are a linear operation. Recalling linear algebra, any linear map (between finite-
dimensional spaces) can be expressed as a matrix, so we will see in this section how to write a convolution
as a matrix multiplication.

Problem 5: Expressing convolutions as matrix multiplication

We shall again consider a 1D convolution. Consider an input x ∈ R4 and filter w ∈ R3. Letting x̄
denote the result of zero-padding the input by 1 on each end, what is the matrix W such that

R4×6︷︸︸︷
W

Zero padded input x̄∈R6︷ ︸︸ ︷
0
x1

x2

x3

x4

0

 = x̄ ∗w?

CS 182/282A, Spring 2021, Discussion 3 5



Solution 5: Expressing convolutions as matrix multiplication

Computing the convolution, we see that

x̄ ∗w =


x1w2 + x2w3

x1w1 + x2w2 + x3w3

x2w1 + x3w2 + x4w3

x3w1 + x4w2

 .
Writing this out as a matrix multiplication, we obtain

W =


w1 w2 w3 0 0 0
0 w1 w2 w3 0 0
0 0 w1 w2 w3 0
0 0 0 w1 w2 w3

 .

We can observe now that the resulting matrix will be very sparse (most entries are 0) if the filter size is
much smaller than the input size, corresponding to the fact that such convolutions exploit spatial locality.
We also observe that there is a lot of parameter reuse, as the convolutional filter weights are repeated many
times throughout the explicit matrix.

This has several implications. First of all, this implies that convolutional layers are less expressive than
fully-connected layers (as fully connected layers are represented by arbitrary matrices).

Another important implication stems from the fact that we have very optimized tools for computing matrix
multiplications. While a naive implementation of a convolution will require looping over all the spatial
dimensions, it will turn out that reformulating the convolution as a matrix multiplication will often be much
faster due to these optimizations (for example, the Cythonized im2col function in part 4 of homework 1
essentially does this).

2.3 Backwards Pass for a Convolution
We’ll consider the same 1D convolution as before, but without zero-padding for simplicity.

Problem 6: Backwards pass for convolutions

Let y = x ∗w ∈ R2, where w ∈ R3, x ∈ R4. Let ∇yL denote the gradient of the loss with respect to
the output of the convolution. Compute the gradients of L with respect to x and y. Can you express
the gradients as convolutions themselves?

CS 182/282A, Spring 2021, Discussion 3 6



Solution 6: Backwards pass for convolutions

Let δi = ∂L
∂yi

. We can explicitly write out the partial derivatives with respect to each entry of x.

∂L

∂x1
= w1δ1

∂L

∂x2
= w2δ1 + w1δ2

∂L

∂x3
= w3δ1 + w2δ2

∂L

∂x4
= w3δ2

We recognize this as convolution where we zero pad δ by 2 on each end, and convolve with the filter
w̃, where w̃ reverses the entries of the filter w. (Draw this out for students, explain why sliding the
filter along means that we should convolve the output derivative with w̃ instead of w).
Now, we can similarly compute the partial derivatives for w

∂L

∂w1
= δ1x1 + δ2x2

∂L

∂w2
= δ1x2 + δ2x3

∂L

∂w3
= δ1x3 + δ2x4

We see that ∂L
∂w = x ?∇yL with no zero-padding.

CS 182/282A, Spring 2021, Discussion 3 7


	Mechanical Backpropagation
	Convolutional Neural Networks
	Convolution (Cross-Correlation) Operator
	Convolutions as Matrix Multiplication
	Backwards Pass for a Convolution


