
CS 182/282A Designing, Visualizing and Understanding Deep Neural Networks
Spring 2021 Sergey Levine Discussion 7

This discussion covers Attention Mechanisms and Transformers.

1 Attention Mechanisms
For many NLP and visual tasks we train our deep models on, features appear on the input text/visual data
often contributes unevenly to the output task. For example, in a translation task, not the entirety of the
input sentence will be useful (and may even be confusing) for the model to generate a certain output word,
or not the entirety of the image contributes to a certain sentence generated in the caption.

While some RNN architectures we previously covered possess the capability to maintain a memory of the
previous inputs/outputs, to compute output and to modify the memory accordingly, these memory states
need to encompass information of many previous states, which can be difficult especially when performing
tasks with long-term dependencies.

Attention mechanisms were developed to improve the network’s capability of orienting perception onto parts
of the data, and to allow random access to the memory of processing previous inputs. In the context of
RNNs, attention mechanisms allow networks to not only utilize the current hidden state, but also the hidden
states of the network computed in previous time steps as shown in Figure 5.

Figure 1: Attention Mechanism Illustrated

1.1 Luong Attention
The Luong attention is one of the commonly used attention mechanism in Neural Machine Translation, which
is trained on the task of translating text from source to target language. At each time-step of decoding, the
Luong Attention computes a set of alignment (attention) weights al based on alignment scores and use this
to augment the computation of output probabilities in the translation task.

As shown in Figure 2, we have our encoding states (RNN hidden states when passed a source language into
the model first) ht. At decoding time, we have the original hidden states hl initially computed with the
previous output token and hidden states.

CS 182/282A, Spring 2021, Discussion 7 1



Figure 2: Luong Attention

With hl and each ht we compute an alignment score 1, then take a Softmax to obtain attention weights from
the alignment scores.

With these attention weights, we compute a context vector ct, which is a weighted sum of hs. As we get ct,
we compute a transformation h̃t = tanh

(
Wf [ht; ct]

)
applied on the concatenation of the context vector and

the original hidden state. This is then used to compute the final output.

The motivation for this kind of machine translation system was to treat the encoder (the blue part) as like
a memory which we can access later during the decoding process (colored red). Most of the early neural
machine translation systems ran the encoder with the input sentence to get a hidden state, and then that
hidden state was the input to the decoder which needed to generate the resulting sentence. With this model,
we are able to use the other hidden state outputs from the encoder, not just the last one.

1.2 Self-Attention in Transformer Networks
Self attention is an attention mechanism introduced in the Transformer architecture which undergoes similar
procedures as the Luong attention. The first step of the attention is to compute Q, K, V using different
transformations from the original input embedding as shown in Figure 3.

1the original paper proposed multiple alignment scores, the general one they propose is h>
l Waht, another simple ’location’

based attention is just computed using the decoding hidden state at time t: Wahl

CS 182/282A, Spring 2021, Discussion 7 2



Figure 3: Computing K, Q, V from input embeddings in a Transformer Network

Then, using Q and K, we can compute a dot product as the ’score’ of K for Q as shown in Figure 4.
Intuitively, Q is the querying term that you would like to find. Its relations for each corresponding K and
V pairs (key-value) pairs, can be computed using the key. Note that this dot product is computed across
various time steps by matrix multiplication. So we get a score for each K for each Q. We then use a Softmax
function to get our attention weights.

Figure 4: Computing Attention Scores from K, Q, V

Finally, using these weights, we can compute our weighted sum by multiplying the weights with the values.
Comparing to the Luong attention, query is analogous to the original hl, key and query are analogous to the
original ht.

Problem: Attention in RNNs

Explain how we incorporate self-attention into an RNN model at a high-level.

CS 182/282A, Spring 2021, Discussion 7 3



Problem: Generalized Attention in Matrix Form

Consider a form of attention that matches query q to keys k1, . . . , kt in order to attend over associated
values v1, . . . , vt.
If we have multiple queries q1, . . . , ql, how can we write this version of attention in matrix notation?

Problem: Justifying Scaled Self-Attention

In practice, Transformers use a Scaled Self-Attention. Suppose q, k ∈ Rd are two random vectors
with q, k ∼ N (µ, σ2I), where µ ∈ Rd and σ ∈ R+

1. Define E[q>k] in terms of µ, σ, d

2. Define V ar(q>k) in terms of µ, σ, d

3. Let s be the scaling factor on the dot product. We would like E[q>k/s] to scale linearly with
d. What should s be in terms of µ, σ, d

4. Briefly explain what would happen to the variance of dot product if s = 1.

1.3 Tutorials on Attention Networks and Eager Execution on Tensorflow
Here is a tutorial that we recommend you run through in RNNs with tf.eager and keras: https://colab.
research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/

examples/nmt_with_attention/nmt_with_attention.ipynb

CS 182/282A, Spring 2021, Discussion 7 4

https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/examples/nmt_with_attention/nmt_with_attention.ipynb
https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/examples/nmt_with_attention/nmt_with_attention.ipynb
https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/examples/nmt_with_attention/nmt_with_attention.ipynb


2 Transformers
At a high-level, transformers consist of the Transformer Encoder and Transformer Decoders.

Figure 5: Overview of Transformer architecture

Both operate similarly, except the Transformer Decoder takes xtarget as input, but Transformer Encoder
takes in xsource as input. In addition, there are several differences in cross-attention and self-attention
operations. In particular, transformers are novel in that they add,

• Positional Encoding: Addresses lack of sequence information

• Multi-headed Attention: Allows querying multiple positions at each layer

• Non-linearities

• Masked Decoding: Prevent attention lookups into the future

2.1 Notations
To ensure a level of clarity, we will let B be the batch size, Lsource represent the source sequence length,
Ltarget be the target sequence length, D represent the model hidden dimension and H represent the number
of attention heads.

In particular, transformers receive two sequences as input. The first is xsource ∈ ZB×Lsource and the second
is xtarget ∈ ZB×Ltarget . These are integer tensors, and each integer represents a word or token.

CS 182/282A, Spring 2021, Discussion 7 5



2.2 Transformer Encoders
Input & Positional Embedding The source tensor is embedded into the model hidden dimension, and
produces a tensor Xsource ∈ RB×Lsource×D. We then add a positional encoding that differs for each sequence
position in order to enable the model to differentiate the positions in the sequence. In general, we need this
information since position of words in a sentence carries information.

Encoder Attention The Encoder Attention is self-attention. Specifically, in Transformer networks, we
use the Scaled QKV Attention (not covered explicitly in lecture). In other words, we would like to build
a representation of a single sequence such that every position in the sequence has information about every
other position in the sequence. In particular, to enable this, we will use the Query-Key-Values (QKV)
Attention. Our queries, keys and values will be tensors in Xsource ∈ RB×Lsource×D and weight matrices will
be WQ,WK ,WV ∈ RD×D. Ultimately, we will retrieve,

Q = XsourceWQ

K = XsourceWK

V = XsourceWV

Using Q,K, V , we will compute the attention scores (tensor in RB×Lsource×Lsource). For each element in the

batch, each entry i, j in the matrix would be
q>i kj√

D
for scaled dot product attention. Alternatively, we can

compute, QK>
√
D

. To produce weights over each position in the sequence, we want each score to sum to one

over the keys K. To accomplish this, we take a softmax update over the last dimension of the attention
scores. Then, to produce the attention update, we multiply these attention weights by our values V ,

Cupdate = softmax

(
QK>√
D

)
V

where Cupdate ∈ RB×Lsource×D

One of the key changes in Transformers is the multi-headed attention mechanism. To turn it into multi-
headed attention, we can take any such update matrices and reshape and permute the matrix from shape
B × Lsource ×D to B ×H × Lsource × D

H .

We finally consider padding. In general, we operate on a batch of B sequences, but these sequences may
not be the same length. We pad each sequence to Lsource. To prevent our model from paying attention
to padded positions, we add −∞ to attention scores prior to the Softmax of any position that should be
ignored.

Feedforward Layer The feedforward layer applies linear transformation to each position, apply a nonlin-
ear activation, then applies a second linear transformation.

2.3 Transformer Decoder
Masked Decoder Self-Attention Masked decoder self-attention is the same as encoder self-attention,
but with different masking. In particular, we would like every position to pay attention to all previous

positions, but not future positions. To achieve this, we set attention score to
q>i kj√

D
if i ≤ j and −∞

otherwise.

Encoder-Decoder Attention Encoder-Decoder attention operated similarly as well, except that we have
two sequences: (1) generate queries and (2) generate keys-values. Hence, we let Q = XtargetWQ,K =
XsourceWK , V = XsourceWV , where Xsource is the output of the transformer encoder on the source sequences.

CS 182/282A, Spring 2021, Discussion 7 6



Problem: Machine Translation

1. What is the reason for positional encoding? How is it typically implemented?

2. What is the advantage of multi-head attention? Give some examples of structures that can be
found using multi-head attention

3. For input sequences of length M and output sequences of length N , what are the complexities of
(1) Encoder Self-Attention (2) Decoder-Encoder Attention (3) Decoder Self-Attention. Further
let k be the hidden dimension of the network

4. Do activation of the encoder depend on decoder activation? How much additional computation
is needed to translate a source sequence into a different target language, in terms of M and N?

2.4 Why Transformers
In general, transformers are good for long-range connections, are easy to parallelize and transformers can be
made much deeper than RNNs. On the other hand, attention computations are complex to implement and
computations take O(n2) time.

However, in practice, it turns out the benefits vastly outweigh the downsides, and transformers work better
than RNNs and LSTMs in many cases.

CS 182/282A, Spring 2021, Discussion 7 7


	Attention Mechanisms
	Luong Attention
	Self-Attention in Transformer Networks
	Tutorials on Attention Networks and Eager Execution on Tensorflow

	Transformers
	Notations
	Transformer Encoders
	Transformer Decoder
	Why Transformers


