
Recurrent Networks
Designing, Visualizing and Understanding Deep Neural Networks

CS W182/282A

Instructor: Sergey Levine
UC Berkeley



What if we have variable-size inputs?
Before:

Now: Examples:

classifying sentiment for a phrase (sequence of words)

recognizing phoneme from sound (sequence of sounds)

classifying the activity in a video (sequence of images)



What if we have variable-size inputs?

Simple idea: zero-pad up to length of longest sequence

+ very simple, and can work in a pinch

- doesn’t scale very well for very long sequences



One input per layer?

Obvious question: what happens to the missing layers?

Note: this doesn’t 
actually work very well 
in practice, we’ll discuss 
this more later



Variable layer count?

anything 
preceding this 

doesn’t matter

This is more efficient than 
always 0-padding the sequence 
up to max length

Each layer is much smaller than 
the giant first layer we would 
need if we feed in the whole 
sequence at the first layer

The shorter the sequence, the 
fewer layers we have to evaluate

But the total number of weight 
matrices increases with max 
sequence length!



Can we share weight matrices?

this is called a recurrent neural network (RNN)

could also call this a “variable-depth” 
network perhaps?



Aside: RNNs and time

What we just learned:

What you often see in textbooks/classes:

this funny thing represents the fact that this layer 
also gets its own “previous” value as input

“a recurrent neural network extends a standard 
neural network along the time dimension”

(or some other assertion of this sort)

This is technically true, but somewhat unhelpful
for actually understanding how RNNs work, and
makes them seem more mystical than they are

RNNs are just neural networks that share weights 
across multiple layers, take an input at each layer, 
and have a variable number of layers



How do we train this?
Backpropagation:

“accumulate” the gradient during the backward pass

To convince yourself that this is true:

derivative through first argument

derivative through second argument 
(via chain rule)



What if we have variable-size outputs?
Examples:

generating a text caption for an image

predicting a sequence of future video frames

generating an audio sequence

frames with yellow labels are predictions

Before: an input at every layer

Now: an output at every layer



An output at every layer
each of these have their own loss!

just like before

some kind of readout function

“decoder”

could be as simple as a linear layer + softmax



Let’s draw the computation graph!

not completely obvious how to do backprop on this!



Graph-structured backpropagation
Also called reverse-mode automatic differentiation Very simple rule:

For each node with multiple descendants 
in the computational graph:

Simply add up the delta vectors coming 
from all of the descendants



Inputs and outputs at each step?

just like before

Examples:

generating a text caption for an image

translating some text into a different language

a bit subtle why there are 
inputs at each time step! 
we’ll discuss this later

though there are much 
better ways to do it!



What makes RNNs difficult to train?



RNNs are extremely deep networks

imagine our sequence length was 1000+

that’s like backpropagating through 1000+ layers!

If we multiply many many numbers together, what will we get?

If most of the numbers are < 1, we get 0

If most of the numbers are > 1, we get infinity

We only get a reasonable answer if the numbers are all close to 1!

“vanishing gradients”

“exploding gradients”

could fix with gradient clipping

big problem!

Intuitively:

vanishing gradients = gradient signal 
from later steps never reaches the 
earlier steps

very bad – this prevents the RNN 
from “remembering” things from the 
beginning!



Promoting better gradient flow
Basic idea: (similar to what we saw before) we would really like the gradients to be close to 1

“RNN dynamics”

dynamics Jacobian best gradient flow

not always good – only good when we want to remember

sometimes we may want to forget



Promoting better gradient flow
Basic idea: (similar to what we saw before) we would really like the gradients to be close to 1

Intuition:

for each unit, we have a little “neural circuit” that decides whether to remember or overwrite

if “remembering,” just copy the previous activation as it is

if “forgetting,” just overwrite it with something based on the current input

“cell state”

“forget gate”



LSTM cells
Long short-term memory

“cell state”

“forget gate”

RNN output at 
previous time step

output is 4x larger in 
dimensionality than RNN cell!

Isn’t this all a little arbitrary?

Well, yes, but it ends up working 
quite well in practice, and much 
better than a naïve RNN!



Why do LSTMs train better?

“cell state”

“forget gate”

RNN output at 
previous time step

changes very little step to step!

“long term” memory

changes all the time (multiplicative)

“short term” memory



Some practical notes
➢ In practice, RNNs almost always have both an input and an output at 

each step (we’ll see why in the next section)
➢ In practice, naïve RNNs like in part 1 almost never work
➢ LSTM units are OK – they work fine in many cases, and dramatically

improve over naïve RNNs
• Still require way more hyperparameter tuning than standard fully

connected or convolutional networks
➢ Some alternatives (that we’ll learn about later) can work better for

sequences
• Temporal convolutions
• Transformers (temporal attention)

➢ LSTM cells are annoyingly complicated, but once implemented, they
can be used the same as any other type of layer (hurray for 
abstraction!)

➢ There some variants of the LSTM that are a bit simpler and work just 
as well
• Gated recurrent unit (GRU)



Using RNNs



Autoregressive models and structured prediction
most RNNs used in practice look like this

why?

most problems that require multiple outputs have 
strong dependencies between these outputs

this is sometimes referred to as structured prediction

Example: text generation I think therefore I am

I like machine learning

I am not just a neural network

I

think: 0.3
like: 0.3
am: 0.4

therefore: 0.3
machine: 0.3
not: 0.4

I: 0.3
learning: 0.3
just: 0.4

we get a nonsense output 
even though the network 
had exactly the right 
probabilities!



Autoregressive models and structured prediction
most RNNs used in practice look like this

why?

most problems that require multiple outputs have 
strong dependencies between these outputs

this is sometimes referred to as structured prediction

Example: text generation I think therefore I am

I like machine learning

I am not just a neural network

I

think: 0.3
like: 0.3
am: 0.4

therefore: 0.8
machine: 0.1
not: 0.1

I: 0.8
learning: 0.0
just: 0.2

we get a nonsense output 
even though the network 
had exactly the right 
probabilities!

think therefore

Key idea: past outputs should 
influence future outputs!



Autoregressive models and structured prediction

Example: text generation I think therefore I am

I like machine learning

I am not just a neural network

I

think: 0.3
like: 0.3
am: 0.4

therefore: 0.8
machine: 0.1
not: 0.1

I: 0.8
learning: 0.0
just: 0.2

think therefore

How do we train it?

Basic version: just set inputs to be 
entire training sequences, and 
ground truth outputs to be those 
same sequences (offset by one step)

This teaches the network to output “am” if it sees “I think therefore I”



Aside: distributional shift

I

think: 0.6
like: 0.3
drive: 0.1

hippo: 0.6
paintbrush: 0.3
California: 0.1

drive

unlikely but 
possible 
mistake

we got unlucky, but now the 
model is completely confused

it never saw “I drive” before

complete nonsense, 
because the network never 
saw inputs remotely like this

The problem: this is a training/test discrepancy: 
the network always saw true sequences as 
inputs, but at test-time it gets as input its own 
(potentially incorrect) predictions

This is called distributional shift, because the
input distribution shifts from true strings (at 
training) to synthetic strings (at test time)

Even one random mistake can completely 
scramble the output!



Aside: scheduled sampling

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, Noam Shazeer. Scheduled Sampling for 
Sequence Prediction with Recurrent Neural Networks. 2015.

An old trick from reinforcement learning adapted to training RNNs

Randomly decide whether to give the network a ground truth 
token as input during training, or its own previous prediction

At the beginning of training, mostly 
feed in ground truth tokens as 
input, since model predictions are 
mostly nonsense

At the end of training, mostly feed 
in the model’s own predictions, to 
mitigate distribution shift

schedules for probability of using 
ground truth input token



Different ways to use RNNs

Image: Andrej Karpathy

in reality, we almost always use 
autoregressive generation like this

e.g., image captioning

e.g., activity recognition

e.g., machine translation

e.g., frame-level video annotation



RNN encoders and decoders

input is processed by a (non-recurrent) 
encoder before going into the RNN

output is processed by a (non-recurrent) 
decoder before getting outputted

very common with image inputs

a bit less common, since we could just 
use more RNN layers



RNNs with many layers

easy to stack as many RNN layers as 
necessary

could even implement recurrent RNN 
(or LSTM) convolutional layers!

just replace this with convolution

each “filter” becomes a little LSTM cell



Bidirectional models
Example: speech recognition

Problem: the word at a particular time step might 
be hard to guess without looking at the rest of the 
utterance!

(for example, can’t tell if a word is finished until 
hearing the ending)

This is an even bigger problem in machine 
translation, but there we use slightly different 
types of models



Some (vivid) examples

Source: Andrej Karpathy



Some (vivid) examples

Source: Andrej Karpathy



Some (vivid) examples

Source: Andrej Karpathy



Some (vivid) examples

Source: Andrej Karpathy



Some (vivid) examples

Source: Andrej Karpathy



Some (vivid) examples

Source: GPT-2

Basically the same principle, 
but uses a different type of 
model that we’ll learn about 
later



Summary
➢ Recurrent neural networks (RNNs): neural networks that can process variable-

length inputs and outputs
➢ Could think of them as networks with an input & output at each layer
➢ Variable depth
➢ Depth = time

➢ Training RNNs is very hard
➢ Vanishing and exploding gradients
➢ Can use special cells (LSTM, GRU)
➢ Generally need to spend more time tuning hyperparameters

➢ In practice, we almost always have both inputs and outputs at each step
➢ This is because we usually want structured prediction
➢ Can use scheduled sampling to handle distributional shift

➢ Many variants for various purposes
➢ Sequence to sequence models (more on this later)
➢ Bidirectional models
➢ Can even “RNN-ify” convolutional layers!


