Recurrent Networks

Designing, Visualizing and Understanding Deep Neural Networks

CSW182/282A

Instructor: Sergey Levine
UC Berkeley

What it we have variable-size inputs?

Before:

€r; —> — — “cat”: 0.64

Now: Examples:
= classifying sentiment for a phrase (sequence of words

ajl — (x1317x1327x1,3?x1,4) y g p (q)

T2 = (22,1, T2,2,723) recognizing phoneme from sound (sequence of sounds)

T3 = (333’1, r3,2,13,3,T3 4, 333’5) classifying the activity in a video (sequence of images)

What it we have variable-size inputs?

r1 = (331,1,331,2,$1,3,$1,4)
Lo = (372,19582,27:82,3)

L3 = (333,17 £3,2y 13,3, L34, $3,5)

Simple idea: zero-pad up to length of longest sequence

(xisl’x":aQJ:Ei,?)?anao) _— s

- doesn’t scale very well for very long sequences

One input per layer?

Zr1 = ($1,1,331,2,331,3,$1,4)
Lo = (21?2,1;35‘2,27332,3)
T3 = ($3,1,$3,2,31‘3,3,933,47393,5)
—_ —_ — —_— — —_ e
[S N | t 1t

1,1 1,2 1,3 1.4 21 22 I23

each layer:
{—1
o a
a1 _
L.t

Obvious question: what happens to the missing layers?

A=wlall 1t o =o(2h

(N S R N |

3,1 £3,2 X33 T34 T35

Note: this doesn’t
actually work very well
in practice, we’ll discuss
this more later

Variable layer count?

This is more efficient than each layer:
Y Y Y Y N always 0-padding the sequence i—1
up to max length at-1 = [@]
af=0 t t t e
1,1 21,2 41,3 1.4 Each layer is much smaller than A =whtat—t + ¢
the giant first layer we would , ,
anything need if we feed in the whole a=o(z)
precedingthis -1 | | —| — — sequence at the first layer
doesn’t matter
at =0 f t t The shorter the sequence, the

L2,1 L22 223 fewer layers we have to evaluate

But the total number of weight
matrices increases with max

sequence length!
d=0 t 1 t 1t 1 a &
r3,1 L32 T33 T34 T35

Can we share weight matrices?

each layer:

L1,1 *1,2 1,3 T1.4 what if W is the same for all these layers? S — Wgag—l 4 bt
ie., W4 = W% for all i, at = o(z")
- — b = bt for all i, j
ad=0 1 t 1 we can have as many “layers” as we want!
21 22 T23
this is called a recurrent neural network (RNN)
Y N BN N N could also call this a “variable-depth”

network perhaps?

at=0 t t 1 1 1

r3,1 L32 T33 T34 T35

Aside: RNNs and time

What we just learned: “a recurrent neural network extends a standard
neural network along the time dimension”

Iy Y N Y N (or some other assertion of this sort)
¢ This is technically true, but somewhat unhelpful
=0 1 t 1 1 for actually understanding how RNNs work, and
T11 Ti2 T13 T1.4 or actually understanding how RNNs work, an
makes them seem more mystical than they are
What you often see in textbooks/classes: RNNs are just neural networks that share weights

across multiple layers, take an input at each layer,
and have a variable number of layers

Lt —> ———

O this funny thing represents the fact that this layer
also gets its own “previous” value as input

How do we train this?

Backpropagation:

forward pass: calculate each a(¥ and 2z

backward pass:

TEIRT _dc
initialize 0 = =755

for each f with input z¢ & params 6 from end to start:
df) taken literally, gradient at £ — 1 will “overwrite” gradient at /¢
\é—%ﬁ most libraries don’t have this problem, because they do it differently

d ac df ., Y : :
f i, EJ accumulate” the gradient during the backward pass

W, b are shared at all these layers
/ ; / shared = the same

—_ = = = —

r1r 1

1,1 1,2 1,3 1.4

What if we have variable-size outputs?

Examples:
generating a text caption for an image

predicting a sequence of future video frames

generating an audio sequence

Before: an input at every layer

Now: an output at every layer

a group of people standing m’ atoilet with a seat up in a

i a young boy is hol :
?erg?;g: Gom Wit baysebagll ba{ bathroom a woman holding a teddy bear in front of a mirror
logprob: -9.17 logprob: -7.61 logprob: -13.44 logprob: =-9.65

Gxoumnd SVZp time SVE-FP oy deter— uxr VAE oy GRAM oy SAVE oy SAVE oy SAVE
tyuth variant ministic (hest) {xrandom) (worst)

frames with yellow labels are predictions

An output at every layer

each of these have their own loss!
¥ ; : X 1 at each step:

bt d=what et |
/ / — just like before
Li—>| | = — — a = U(Z) .
Je = f(a")
\
we have a loss on each ge some kind of readout function
(e.g., cross-entropy) “decoder”

could be as simple as a linear layer + softmax

L) =Y Leliie)
V4

Let’s draw the computation graph!

%@1 Q?Q Q?s Qz‘TA L= Wl
¢ ! .
¢ = O(Z) L(J1.1) = Zﬁ (9e)
L —> — — —
Je = f(a

Bedd

not completely obvious how to do backprop on this!

Graph-structured backpropagation

Also called reverse-mode automatic differentiation Very simple rule:

do the following at each layer f(xs) — yy For each node with multiple descendants
starting with the last function, where § = 1 in the computational graph:

Simply add up the delta vectors coming
2
y
Yr

from all of the descendants

%@»L
() (&) (&)
PN

Qs e.g., a* = ReLU(2")
@@/ 4 L Wt ot
WY

Inputs and outputs at each step?

Uil Ui2 Uiz Yia at each step:
t 1 -
e [o1]
a —
— —_ —_ IEi’t
_ — just like before
\ T \ T R X J
Ti1,1 1,2 T1,3 T14 at = o(2)
~ 14
G = f(a”)
Examples:

a bit subtle why there are
generating a text caption for animage <« inputs at each time step!

we’ll discuss this later
translating some text into a different language

\ though there are much

better ways to do it!

What makes RNNSs difficult to train?

RNNs are extremely deep networks

Intuitively:
Yi1l Ui2 U3 Ui 4 vanishing gradients = gradient signal
t t t t from later steps never reaches the
imagine our sequence length was 1000+ earlier steps
— N — o _ very bad — this prevents the RNN
that’s like backpropagating through 1000+ layers! ¢.5 “remembering” things from the
t t t t beginning!
1,1 1,2 1,3 1.4 e . ”
vanishing gradients
big problem!
dl dz(l) da(l) dZ(Q) dLl If we multiply many many numbers together, what will we get?
AW aW D) dz(D) dag) qd2(2) If most of the numbers are < 1, we get 0
adr dLl If most of the numbers are > 1, we get infinity

= JiJoJs ... Jy
dW(l) dZ(n) / We only get a reasonable answer if the numbers are all close to 1!

“exploding gradients”
could fix with gradient clipping

Promoting better gradient flow

Basic idea: (similar to what we saw before) we would really like the gradients to be close to 1

which gradients?

each layer:

Lt
L J

Qi1 = [@1] zp =Wap_1 + b at = O'(Zt)

a; = q(as_1,7;) “RNN dynamics”

dq

~T best gradient flow
dai—1

dynamics Jacobian

not always good — only good when we want to remember

sometimes we may want to forget

Promoting better gradient flow

Basic idea: (similar to what we saw before) we would really like the gradients to be close to 1

dg;

Intuition: want Ta,
at—1,4

~ 1 if we choose to remember a;_1 ;

for each unit, we have a little “neural circuit” that decides whether to remember or overwrite

if “remembering,” just copy the previous activation as it is f, € [O 1]
?
if “forgetting,” just overwrite it with something based on the current input 1
ar = a;—1ft + gt
dg; __
at—1 a dar—1.: ft c [O, 1]

“cell state”
ft S [07 1]
“forget gate”

gt

LSTM cells

Isn’t this all a little arbitrary?
Long short-term memory

Well, yes, but it ends up working
quite well in practice, and much
e ay better than a naive RNN!

——(

“cell state”

ft S [O? 1]
“forget gate”

i € 10,1
() O ED
he_1q @ @ gt € [-1,1] a P

RNN output at

previous time step a Ot - [O, 1]
Ty I ft 1 each of these is
W { he—1] Lp = it a vector with same
output is 4x larger in Lt gt dims as hs_1
dimensionality than RNN cell! | Ot |

Why do LSTMs train better?

a Q¢ ar = ar—1ft + gt

changes very little step to step!

——(

“cell state”

ft S [O? 1]
“forget gate”

0 ir €10,1
hi_1 @ @ g+ € [—1,1] @ hy changes all the time (multiplicative)

RNN output at “short term” memory
previous time step a Ot - [O, 1]

“long term” memory

Some practical notes

» In practice, RNNs almost always have both an input and an output at
each step (we’ll see why in the next section)

» In practice, naive RNNs like in part 1 almost never work

» LSTM units are OK — they work fine in many cases, and dramatically
improve over naive RNNs

» Still require way more hyperparameter tuning than standard fully
connected or convolutional networks

» Some alternatives (that we’ll learn about later) can work better for
sequences

 Temporal convolutions
* Transformers (temporal attention)

» LSTM cells are annoyingly complicated, but once implemented, they
can be used the same as any other type of layer (hurray for
abstraction!)

» There some variants of the LSTM that are a bit simpler and work just
as well

e Gated recurrent unit (GRU)

LIS S B

1,1 1,2 1,3 L1.4

Using RNNs

Autoregressive models and structured prediction

Yi1l Yi2 Yi,3 Yi4 most RNNs used in practice look like this

why?

most problems that require multiple outputs have
strong dependencies between these outputs

L

1,1 12 1,3 T1,4 this is sometimes referred to as structured prediction
Example: text generation I think therefore I am

think: 0.3) therefore: 0.3 1:0.3 I like machine leal‘ning

like: 0.3 machine: 0.3 | learning: 0.3 . 1]

am: 0.4 not: 0.4 jUSt: 0.4 I am not]ust a neural network

f f f

we get a nonsense output

even though the network
had exactly the right

t e
probabilities!

v
v

Autoregressive models and structured prediction

Yi1l Yi2 Yi,3 Yi4 most RNNs used in practice look like this

why?

most problems that require multiple outputs have
strong dependencies between these outputs

L

1,1 1,2 1,3 T1/4 this is sometimes referred to as structured prediction
Example: text generation I think therefore I am
think: 0.3] therefore: 0.8] I: 0.8 I like machine learning
like: 0.3 machine: Q.1 learning: 0.0 . 1]
am: 0.4 not: 0.1 just: 0.2 I am not]ust a neural network
t t t Key idea: past outputs should

influence future outputs!

we get a nonsense output

even though the network
had exactly the right

! ! ! probabilities!

v
v

| think therefore

Autoregressive models and structured prediction

How do we train it? x1.5 = (“I”, “think”, “therefore”, “I”, “am”)
- (44 : 27« 7 WU« 7

Basic version: just set inputs to be y1:5 = (“think”, “therefore”, “I”, “am”, stop_token)

entire training sequences, and

ground truth outputs to be those

same sequences (offset by one step)

This teaches the network to output “am” if it sees “I think therefore 1”

Example: text generation I think therefore I am
think: 0.3] therefore: 0.8] I: 0.8 I like machine learning
like: 0.3 machine: Q.1 learning: 0.0 .
am:041 ot 0.1 just: 0.2 I am not just a neural network

f f f

v
v

f f f

| think therefore

Aside: distributional shift

think: 0.6 hippo: 0.6
like: 0.3 paintbrush: 0.3
drive: 0.1 California: 0.1

/ f f

unlikely but +—
possible
mistake 4 t
| drive

we got unlucky, but now the
model is completely confused

it never saw “I drive” before

complete nonsense,
because the network never
saw inputs remotely like this

The problem: this is a training/test discrepancy:
the network always saw true sequences as
inputs, but at test-time it gets as input its own
(potentially incorrect) predictions

This is called distributional shift, because the
input distribution shifts from true strings (at
training) to synthetic strings (at test time)

Even one random mistake can completely
scramble the output!

Aside: scheduled sampling

An old trick from reinforcement learning adapted to training RNNs schedules for probability of using

ground truth input token

. . . . l T
At the beginning of training, mostly o2 N Eg“ —
Sample Pym— feed in ground truth tokens as o [\
LU Y
Lo Los input, since model predictions are oL\
NER | FGDY | mos p i\
11) mostly nonsense b N
Dﬂ 200 400 600 800 1
h(1) | ... —f h(t-1) ht)y
¥] At the end of training, mostly feed
X P, in the model’s own predictions, to
« mitigate distribution shift
X
sampled y(t-2) true y(t-2) true yit-1)

Randomly decide whether to give the network a ground truth
token as input during training, or its own previous prediction

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, Noam Shazeer. Scheduled Sampling for
Sequence Prediction with Recurrent Neural Networks. 2015.

Different ways to use RNNs

in reality, we almost always use
autoregressive generation like this

one to one one to many many to one many to many many to many

e.g., activity recognition e.g., frame-level video annotation

e.g., image captioning e.g., machine translation

Image: Andrej Karpathy

RNN encoders and decoders

output is processed by a (non-recurrent)
decoder before getting outputted

a bit less common, since we could just
use more RNN layers

input is processed by a (non-recurrent)
encoder before going into the RNN

very common with image inputs

RNNs with many layers

—_— s s | s @ —

[N R
H*H *H *H *H F oriicpaosmen s
R R R
1111

could even implement recurrent RNN
(or LSTM) convolutional layers!

Jt

\ y \ \ y hi— i
. . . . t t

just replace this with convolution -

/ Oy

each “filter” becomes a little LSTM cell - -

Bidirectional models

Example: speech recognition

Problem: the word at a particular time step might

T T T T T be hard to guess without looking at the rest of the
utterance!
pumnl hosssl ol g (for example, can’t tell if a word is finished until
hearing the ending)
T T T T T This is an even bigger problem in machine
translation, but there we use slightly different
_ > — — types of models

Some (vivid) examples

THE SONNETS

by William Shakespeare y

From fairest creatures we desire increase,
That thereby beauly’s rose might never die,
Bunt as the riper should by time decease,
His tencher heir might brar his memony:
But thow, contracted to thine own bright eyes,
Feadar thy Light's flame with self-subsranial fuel,
Making a famine where abundance lies,
Thyself thy for, o thy sweet self to oneel:
Thou that arl now the world's [resh oosament, _.,
And anly berald o the gaudy spring.
Wiihin thine pwn b bariest thy consent,
And tender churl mak'st waste in niggarding:
Pity the world, or else this gluion be,
Tov et the world's duse, by the grave and thee

When lory winbers shall besisge thy brow,
And dig deep crenches in thy beauy's field,
Thy yoanih's praoud livery so gazed on o,
Will be a tatter'd weed of small worth heled: x
Them being ashed, where all thy beauty lies,
where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Wiere an all-sating shame, am thrifiless praise.
How musch more praise deservd thy beaury's use,
If thow couldst answer “This fair chld of mine
Shall sum my count, and make my ald excuse,
Proving liis beauty by succession thine!
This were to be new made when thou ant old,
And see thy bond warm when thou feel'st it cold

Source: Andrej Karpathy

Some (vivid) examples

¢ f' t tyntd-iafhatawiaoihrdemot 1lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
at first. plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns 1lng

train more

“Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

\ train more
Aftair fall unsuch that the hall for Prince Velzonski's that me of

her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
how, and Gogition is so overelical and ofter.

l train more

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

Source: Andrej Karpathy

Some (VIVI

PANDARUS :

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

Source: Andrej Karpathy

examples

VIOLA:

Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,

That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

0, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.

Some (vivid) examples

The Stacks Project: open source algebraic geometry textbook

2 The Stacks Project
home about tagsexplained iaglookup browse search bibliography recentcomments blog add slogans
Browse chapters Parts
1. liminari
Part Chapter online TeX source view pdf 2. Eﬁmim
Preliminaries 3. Topics in Scheme Theory
1. Introduction online tex() pdf > 4. Algebraic Spaces
2. Conventions online tex() pdf > 2‘ To?ncrs":n ?eno?:]etrv
% . Deformation Theory
3. Set Theory online tex() pdf > 7. Algebraic Stacks
4. Categories online tex() pdf > 8. Miscellany
5. Topology Qﬂ!mg tex() pdf > o
6. Sheaves on Spaces online tex() pdf >
7. Sites and Sheaves online tex() pdf > The Stacks project now consists of
8. Stacks online tex() pdf > o 455910 lines of code
9. Fields online tex() pdf > o 14221 tags (56 inactive tags)
10. Commutative Algebra online tex() pdf > o 2366 sections

e

Latex source e

wpJ) o
The stacks project is licensed under the GNU Free Documentation License

Source: Andrej Karpathy

Some (vivid) examples

For @, ;. . Where L, =0, hence we can find a closed subset H in H and
any sets F on X, U is a closed immersion of S, then U/ — T is a separated algebraic
space,

Proof. Proof of (1). It also start we get

S=Spec(R)=U xx Uxx U
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [1Z xp U — V., Consider the maps M along the set of points
Schyp,y and U — U is the fibre category of S in U in Section, 77 and the fact that

any U/ affine. see Morphisms, Lemmma 7?7, Hence we obtain a scheme S and any
open subset W C U in SH(G) such that Spec(R’) —+ S is smooth or an

U=JUixs U
which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Oy, is a scheme where 2, 27, " € 8’ such that Ox . — Of\-,.,. s
separated. By Algebra, Lemma ?? we can define a map of complexes GLg/ (2" /8")
and we win,

To prove study we see that F|y is a covering of A", and 7} is an object of Fy,g for
i > 0 and F, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In partienlar F = U/F we have to show that

M =T Bspec(k) Og,4 = f.}l-r)
s & unique morphism of algebraie stacks. Note that

Arrows = (Srh/S)‘,'"”;,.(Sch/S),",

and

V= T(S,0) = (U, Spec(A))
is an open subsct of X. Thus U7 is affine. This is a continuous map of X is the
inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets. O

The result for prove any open covering follows from the less of Example 77, It may
replace S by Xywces ctate Which gives an open subspace of X and T equal to Sz,
see Descent, Lemma ?7. Namely, by Lemma 77 we see that R is geometrically
regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.
Suppose X = lim | X| (by the formal open covering X and a single map Proj, (A) =
Spece{ B) over U compuatible with the complex

Set{A) =T'(X,Ox 0,)-

When in this case of to show that Q — Cz;x is stable under the following result
in the second conditions of (1). and (3). This finishes the proof. By Definition 2?7
(usthout element s when the closed subschemes are catenary. If T is surjective we
may assume that T is connected with residue fields of S. Moreover there erists a
closed subspace Z © X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem

(1) J is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a
surjective étale morphism U < X, Let UnU =[], U; be the scheme X over
S at the schemes X, =+ X and U = lim, X,. O

The following lemma surjective restrocomposes of this implies that ¥, = F, =
Fx..o0

Lemma 0.2. Let X be a locally Noetherian scheme over S, E = Fyyg. Set T =
Jh €I, Since I" C I™ are nonzero over i < p is a subset of T, 00 Ay works.

Lemma 0.3. In Situation 72. Hence we may assume q' = (),

Proof. We will use the property we see that p is the mext functor (77). On the
other hand, by Lemma ?7 we see that

D(Ox+) = Ox(D)

where K is an F-algebra where §,, .y is a scheme over S, o

Source: Andrej Karpathy

Some (vivid) examples

OpenAI GPT—2 generated text source Basically the same principle,

but uses a different type of
model that we’ll learn about

Input: In a shocking ﬁnding, scientist discovered a herd of unicorns living in a remote, later

previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

Output: The scientist named the population, after their distinctive horn, Ovid’'s Unicorn.
These four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is
finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several
companions, were exploring the Andes Mountains when they found a small valley, with no
other animals or humans. Pérez noticed that the valley had what appeared to be a natural
fountain, surrounded by two peaks of rock and silver snow.

Source: GPT-2

summary

» Recurrent neural networks (RNNs): neural networks that can process variable-
length inputs and outputs
» Could think of them as networks with an input & output at each layer
» Variable depth
» Depth =time
» Training RNNs is very hard
» Vanishing and exploding gradients
» Can use special cells (LSTM, GRU)
» Generally need to spend more time tuning hyperparameters
» |In practice, we almost always have both inputs and outputs at each step
» This is because we usually want structured prediction
» Can use scheduled sampling to handle distributional shift
» Many variants for various purposes
» Sequence to sequence models (more on this later)
» Bidirectional models
» Can even “RNN-ify” convolutional layers!

