
Sequence to Sequence Models
Designing, Visualizing and Understanding Deep Neural Networks

CS W182/282A

Instructor: Sergey Levine
UC Berkeley



Last time: RNNs and LSTMs

Image: Andrej Karpathy

e.g., image captioning

e.g., activity recognition

e.g., machine translation

e.g., frame-level video annotation



A basic neural language model

training data: natural sentences

I think therefore I am

I like machine learning

I am not just a neural network

in reality there could be several million of these

how are these represented?

tokenize the sentence (each word is a token)

simplest: one-hot vector

more complex: word embeddings (we’ll cover this later)

dimensionality = number of possible words

index of this word

“I” “think” “therefore” “I”

“think” “therefore” “I” “am”

We’ll talk about real
language models 
much more later



A few details

“I” “think” “therefore” “I”

“think” “therefore” “I” “am”

“am”

<EOS>

train model to output <EOS> 
token when sequence ends

<START>

“I”

If we want to come up with an 
entirely new sequence, start 
with a special <START> token

Question: how do we 
use such a model to 
complete a sequence 
(e.g., give it “I think…” 
and have it finish it?)



A conditional language model

<START> A cute puppy

A cute puppy <EOS>

What do we expect the training data to look like?

How do we tell the RNN what to generate?

RNN decoder
CNN encoder

vector encoding of the desired 
content of the sequence



What if we condition on another sequence?

<START> A cute puppy

A cute puppy <EOS>

RNN decoderRNN encoder

vector encoding of the desired 
content of the sequence

<START> Un chiot mignon

doubles as <EOS> token for input sequence

in reality the input sequence is 
often read in reverse

why?



Sequence to sequence models

<START> A cute puppy

A cute puppy <EOS>

RNN decoderRNN encoder

<START> Un chiot mignon

typically two separate RNNs (with different weights)

trained end-to-end on paired data (e.g., pairs of French & English sentences)



A more realistic example

<START> A cute puppy

A cute puppy <EOS>

Unchiotmignon

➢ Multiple RNN layers
➢ Each RNN layer uses LSTM cells (or GRU)
➢ Trained end-to-end on pairs of sequences
➢ Sequences can be different lengths

Not just for cute puppies!
➢ Translate one language into another language
➢ Summarize a long sentence into a short sentence
➢ Respond to a question with an answer
➢ Code generation? text to Python code

For more, see: Ilya Sutskever, Oriol Vinyals, Quoc V. Le. 
Sequence to Sequence Learning with Neural Networks. 2014.



Decoding with beam search



Decoding the most likely sequence

<START> One ???puppy

A: 0.48
One: 0.51

Puppy: 0.53
Cute: 0.47

Cute: 0.05
Is: 0.70

<EOS>: 0.25

RNN decoderRNN encoder

Unchiotmignon

notice we feed this in 
reverse, and don’t 
need a “<START>” 

token on the encoder



What we should have done

<START> A puppycute

A: 0.48
One: 0.51

Puppy: 0.47
Cute: 0.53

Puppy: 0.95
Is: 0.01

<EOS>: 0.04

RNN decoderRNN encoder

Unchiotmignon

notice we feed this in 
reverse, and don’t 
need a “<START>” 

token on the encoder

much higher 
probability here

slightly lower 
probability here

depends on whole 
input sequence

and output 
sequence so far!

probabilities at each time step

If we want to maximize the 
product of all probabilities, 
we should not just greedily 
select the highest probability 
on the first step!



How many possible decodings are there?

Word 1: 0.4
Word 2: 0.2
Word 3: 0.3
<EOS>: 0.1

Word 1: 0.1
Word 2: 0.5
Word 3: 0.2
<EOS>: 0.2

Word 1: 0.7
Word 2: 0.1
Word 3: 0.1
<EOS>: 0.1

Word 1: 0.1
Word 2: 0.8
Word 3: 0.0
<EOS>: 0.1

Word 1: 0.0
Word 2: 0.1
Word 3: 0.0
<EOS>: 0.9

Decoding is a search problem

step 1

word 1: 0.4

word 2: 0.2

word 3: 0.3

<EOS>: 0.1

word 1
word 2
word 3
<EOS>
word 1
word 2
word 3
<EOS>
word 1
word 2
word 3
<EOS>
word 1
word 2
word 3
<EOS>

We could use any tree search algorithm

But exact search in this case is very 
expensive

Fortunately, the structure of this problem 
makes some simple approximate search 
methods work very well



Decoding with approximate search
Decoding is a search problem

step 1

word 1: 0.4

word 2: 0.2

word 3: 0.3

<EOS>: 0.1

word 1
word 2
word 3
<EOS>
word 1
word 2
word 3
<EOS>
word 1
word 2
word 3
<EOS>
word 1
word 2
word 3
<EOS>

Basic intuition: while choosing the highest-probability word on 
the first step may not be optimal, choosing a very low-probability 
word is very unlikely to lead to a good result

Equivalently: we can’t be greedy, but we can be somewhat greedy

This is not true in general! This is a guess based on what we know 
about sequence decoding.

Beam search intuition: store the k best sequences so far, and 
update each of them.

special case of k = 1 is just greedy decoding

often use k around 5-10



Beam search example

in practice, we sum up the log probabilities as we go (to avoid underflow)

Example (CS224n, Christopher Manning): translate (Fr->En): il a m’entarté (he hit me with a pie)

no perfectly equivalent English word, makes this hard

<START>

he

I

…and many other 
choices with lower 
log-prob

hit

k = 2 (track the 2 most likely hypotheses)

struck

was

got

me

a

struck

hit

-2.5

-2.8

-3.8

-2.9 on

with

pie

tart

-3.4

-4.0

-3.5

-3.3



Beam search summary



When do we stop decoding?
Let’s say one of the highest-scoring hypotheses ends in <END>

Save it, along with its score, but do not pick it to expand further (there is nothing to expand)

Keep expanding the k remaining best hypotheses

<START>

he

I

hit

struck

was

got

me

a

struck

hit

-2.5

-2.8

-3.8

-2.9 on

with

pie

tart

-3.4

-4.0

-3.5

-3.3

one

a

delicious

pie

on

<EOS>
save, don’t 
select

on

with

tart

pie

tart

pie

continue to 
expand these

Continue until either some cutoff length T or 
until we have N hypotheses that end in <EOS>



Which sequence do we pick?
At the end we might have something like this:

he hit me with a pie

he threw a pie

I was hit with a pie that he threw

log p = -4.5

log p = -3.2

log p = -7.2
this is best, right?

Problem: p < 1 always, hence log p < 0 always

The longer the sequence the lower its total score (more negative numbers added together)

Simple “fix”: just divide by sequence length



Beam search summary



Attention



The bottleneck problem

<START> A cute puppyUnchiotmignon

A cute puppy <EOS>

all information about the source sequence 
is contained in these activations

this forms a bottleneck

Idea: what if we could somehow “peek” at the source sentence while decoding?

How can we do this?



Can we “peek” at the input?

<START> A cute puppyUnchiotmignon

How can we do this?

some function (e.g., 
linear layer + ReLU)

key vector (represents what type 
of info is present at this step)

query vector (represents what 
we are looking for at this step)

compare query to each key to find the closest one

(crude) intuition: key might 
encode “the subject of the 
sentence,” and query might ask 
for “the subject of the sentence”

In reality what keys and queries 
mean is learned – we do not 
have to select it manually!



Attention

<START> A cute puppyUnchiotmignon

How can we do this?

not differentiable!

(kind of like appending a to the input)



Attention Walkthrough (Example)

<START> A cute puppyUnchiotmignon



Attention Walkthrough (Example)

<START> A cute puppyUnchiotmignon



Attention Walkthrough (Example)

<START> A cute puppyUnchiotmignon



Attention Equations

<START> A cute puppyUnchiotmignon



Attention Variants

<START> A cute puppyUnchiotmignon



Attention Variants

just learn this matrix

<START> A cute puppyUnchiotmignon



Attention Variants

some learned function

<START> A cute puppyUnchiotmignon



Attention Summary

Why is this good?

➢ Attention is very powerful, because now all decoder steps are 
connected to all encoder steps!

➢ Connections go from O(T) to O(1)
➢ Gradients are much better behaved (O(1) propagation length)
➢ Becomes very important for very long sequences
➢ Bottleneck is much less important
➢ This works much better in practice

<START> A cute puppyUnchiotmignon


