Transformers

Designing, Visualizing and Understanding Deep Neural Networks

CSW182/282A

Instructor: Sergey Levine
UC Berkeley

s Attention All We Need?

Attention

Tgl ﬂz (il?’ G 3 If we have attention, do we even need recurrent connections?
= — > 2,
| softmax | _ .
3 3 3 Can we transform our RNN into a purely attention-based model?
€1 €2 €3
é é é Attention can access every time step
—y
Can in principle do everything that recurrence can, and more!
kl kQ k‘g 2 qs3

This has a few issues we must overcome:
Problem 1: now step [= 2 can’t access s1 or sg
i |
hi— ho— ha —» 50 — 51 —» 52 —, 53 The encoder has no temporal dependencies at all!
We must fix this first

Pttt
i1 Ti2 L33 Yi,0 Yi,1l Yi2 Yi3
mignon chiot Un <START> A cute puppy

Self-Attention

O O O i = explers)/ D explerr)
/ 4 A /u "
T 1 (%) Q3 el = qr - ky we’ll see why this is important soon
> = v(ht) before just had v(h;) = h hy) = W,h
| softmax | ve = v(hy) efore just had v(h;) = hy, now e.g. v(h) = Wyhy
€1,1 €1,2 €1,3 ki = k(h;) (just like before) — e.g., kt = Wihy
[NE= ! =40 it~ Wi

this is not a recurrent model!

ki1 91|U1 ko Q2 V2 k3 (3 Vs

but still weight sharing:
Nt/ Xt/ ANt/ 5 5
ht = O'(W.CCt —|— b)
hl hg h3 shared weights at all time steps

(or any other nonlinear function)

S e ‘ f— Att en t | on A keep repeating until we've

= processed this enough

= atthe end, somehow decode it into
a1 = an answer (more on this later)

@‘v self-attention “layer”

t ottt ot ottt

‘ 051/ | .‘A CY3/“ kl 41 - ’CQ q2 - k3 qs3 i
.

| softmax _>| Nt/ \ 1t/ Nt/

€1,1 €1.9 €1,3 aj a2 as
N T T T T
b o ke 2t ks as b bttt ottty
AL \ 17 Nt k1 ‘11- ko Q2- ks %i

. . . Nt/ At/ At/
hy ho I3
1 1 1 1 1 1

L1 L2 T3 x1 X9 X3

From Self-Attention to Transformers

The basic concept of self-attention can be used to develop a very powerful type of
sequence model, called a transformer

But to make this actually work, we need to develop a few additional components to
address some fundamental limitations

1. Positional encoding addresses lack of sequence information
2. Multi-headed attention allows querying multiple positions at each layer

aj = Z CIRAC
3. Adding nonlinearities so far, each successive layer is linear in the previous one t

4. Masked decoding how to prevent attention lookups into the future?

Sequence Models with Self-Attention

From Self-Attention to Transformers

The basic concept of self-attention can be used to develop a very powerful type of
sequence model, called a transformer

But to make this actually work, we need to develop a few additional components to
address some fundamental limitations

[1. Positional encoding] addresses lack of sequence information
2. Multi-headed attention allows querying multiple positions at each layer
aj = Z CIRAC
3. Adding nonlinearities so far, each successive layer is linear in the previous one t

4. Masked decoding how to prevent attention lookups into the future?

Positional encoding: what is the order?

a1 what we see:
CZTD he hit me with a pie
v@
RO,] . hit :
/1 3 /1 what naive self-attention sees: with mea
T 1 Qa9 Q3 o . pie he
| e |, a pie hit me with he
| softmax | a hit with me he pie
€1.1 €1.2 €) . .
I’ ’ = he pie me with a hit
{\%%\L most alternative orderings are nonsense, but some change the meaning

ki1 91|U1 ko Q2 V2 k3 (3 Vs

/ / /
\ \ \ Idea: add some information to the representation at the
beginning that indicates where it is in the sequence!
h1 ho hs

ht — f(xtat)

t t t \
T1) I3 some function

in general the position of words in a sentence carries information!

Positional encoding: sin/cos

Naive positional encoding: just append ¢ to the input Ty = { ?]

This is not a great idea, because absolute position is less important than relative position

| walk my dog every day every single day | walk my dog The fact that “my dog” is right after “I walk” is

U u the important part, not its absolute position

we want to represent position in a way that tokens with similar relative position have similar positional encoding

Idea: what if we use frequency-based representations? “even-odd” indicator >
C sin(¢/100002¢1/4) 2 AE AT E AT
COS(t/mOOOj*;;j) dimensionality £ =
. * [=
sin(t/10000™%/%) 1 of positional
p. = | cos(t/10000%*2/4) encoding 5
Sin(t/l()OOOQ*%/d) Index in the sequence
| cos(t/10000%+5/4) |

“first-half vs. second-half” indicator

Positional encoding: learned

Another idea: just learn a positional encoding

I I I Different for every input sequence

P1 D2 P3 The same learned values for every sequence
\ [/ dimensionality max sequence length
but different for different time steps /
How many values do we need tolearn? P — [p;, po, ..., pr] € R¥*T

+ a bit more complex, need to pick a max sequence length (and can’t generalize beyond it)

How to incorporate positional encoding?

At each step, we have z; and p;

X
Simple choice: just concatenate them Ty = [!]

More often: just add after embedding the input

input to self-attention is emb(x;) + py

|

some learned function (e.g., some fully connected
layers with linear layers + nonlinearities)

From Self-Attention to Transformers

The basic concept of self-attention can be used to develop a very powerful type of
sequence model, called a transformer

But to make this actually work, we need to develop a few additional components to
address some fundamental limitations

1. Positional encoding addresses lack of sequence information
[2. Multi-headed attention] allows querying multiple positions at each layer
aj = Z CIRAC
3. Adding nonlinearities so far, each successive layer is linear in the previous one t

4. Masked decoding how to prevent attention lookups into the future?

Multi-head attention

Since we are relying entirely on attention now, we might want to incorporate more than one time step

PN

ki 41 U1 ko Q2 U2
Nt/ Nt/
hq ho

]{3 q3

U3

Nt/

— E Qi Ut
t

because of softmax, this will
be dominated by one value

€t — q1- kot

hard to specify that you want two
different things (e.g., the subject
and the object in a sentence)

Multi-head attention

Idea: have multiple keys, queries, and values for every time step!

full attention vector formed by concatenation:

a2
a2 = a2 2
a2 3

compute weights independently for each head

erti=qri- ki

b

klal d1,1 V1,1 k2,1 g2.1 V21 k3,1 d3.1 V3,1 byt p() ’%)/ : : p() ;@)

\ T / \ T / \ T / al,,,; = Zal,t,wt,i
t
hl h2 h3

around 8 heads seems to work
pretty well for big models

From Self-Attention to Transformers

The basic concept of self-attention can be used to develop a very powerful type of
sequence model, called a transformer

But to make this actually work, we need to develop a few additional components to
address some fundamental limitations

1. Positional encoding addresses lack of sequence information
2. Multi-headed attention allows querying multiple positions at each layer
aj = Z CIRAC
[3. Adding nonlinearities] so far, each successive layer is linear in the previous one t

4. Masked decoding how to prevent attention lookups into the future?

Self-Attention is Linear

a
Tl ki = Wihy qt — tht vy = Wyhy
v _
@“@ O apr = explers)/ Z exp(e;)
/ A A /u t’
T Iﬂl 2 @3 X €Lt = qp- ki
| softmax |
€1,1 €1,2 €1,3 a; — Z Ut — Z @l,thht =W, Z Odl,tht
N T AR
{v non-linear weights

linear transformation

ki1 91|U1 ko Q2 V2 k3 (3 Vs

Nt/ Nt/ Nt/ Every self-attention “layer” is a linear
transformation of the previous layer
ha o h3 (with non-linear weights)
t t t This is not very expressive

Alternating self-attention & nonlinearity

self-attention “layer”

ttt ttt tt

T
QIH ICQ QQH k‘3 QSW
/

k1
Nt/ Nt/ \ t
hi h3 h3
Tl TQ T3 . some non-linear (learned) function
B B I e.g., ht = o(Wtat +b*)
$ $ $ just a neural net applied at every position

after every self-attention layer!

self-attention “layer”

ttt tt t

Sometimes referred to as “position-

i . wise feedforward network”
\ t \ t We'll describe some specific
h% hé commonly used choices shortly
f f f

From Self-Attention to Transformers

The basic concept of self-attention can be used to develop a very powerful type of
sequence model, called a transformer

But to make this actually work, we need to develop a few additional components to
address some fundamental limitations

1. Positional encoding addresses lack of sequence information
2. Multi-headed attention allows querying multiple positions at each layer

aj = Z CIRAC
3. Adding nonlinearities so far, each successive layer is linear in the previous one t

[4. Masked decoding] how to prevent attention lookups into the future?

Self-attention can see the future!

A crude self-attention “language model”: (in reality, we would have many alternating
self-attention layers and position-wise
feedforward networks, not just one)

?32‘ y“3‘ U4

T2 \ T2) 12 Big problem: self-attention at step 1 can look at the value

hi \ hy \ h3 at steps 2 & 3, which is based on the inputs at steps 2 & 3

by ty r

a1 “ as “ as At test time (when decoding), the inputs at steps 2 & 3 will
\‘ \‘ be based on the output at step 1...

...wWhich requires knowing the input at steps 2 & 3

sel®-gttention “lay=r”

Masked attention

A crude self-attention “language model”:

U4

At test time (when decoding), the inputs at steps 2 & 3 will
be based on the output at step 1...

...Which requires knowing the input at steps 2 & 3

Must allow self-attention into the past...

...but not into the future

Easy solution:

€t - ky

. 1 >
Bljt:{Ql kt lfl_t

—00 otherwise

in practice:
just replace exp(e;¢) with 0 if [<t

inside the softmax

Implementation summary
| selfattenton “ayer’

self-attention “layer”

tt o+ttt ottt
ki 41 v1 ko q2 | V2 ks g3 |Us
Nt/ Nt/ Nt/
hi h3 h3
t t t
a1 a2 as
t t t
(R tt t t t 1
k1 71 U ko g2 |2 ks g3 | U3
Nt/ \t/ Nt/
hi h s
t t t
L1 L2 L3

» We can implement a practical
sequence model based entirely on
self-attention

» Alternate self-attention “layers” with
nonlinear position-wise feedforward
networks (to get nonlinear
transformations)

» Use positional encoding (on the input
or input embedding) to make the
model aware of relative positions of
tokens

» Use multi-head attention

» Use masked attention if you want to
use the model for decoding

The Transformer

Sequence to sequence with self-attention
» There are a number of model designs

k1 q1 V1 kg qz2 | U2 k3 q3 U3
Nt/ Nt/ Nt/

hi h3 hs

t t t

aq a2 as

t t t
(R tt t t t 1
ki q1 U1 ko 92 V2 k3 43 U3
Nt/ Nt/ Nt/

hy h3 h3

t t t

1 X9 X3

that use successive self-attention and
position-wise nonlinear layers to
process sequences

» These are generally called
“Transformers” because they transform

one sequence into another at each layer

= See Vaswani et al. Attention Is All You
Need. 2017

» The “classic” transformer (Vaswani et al.
2017) is a sequence to sequence model

» A number of well-known follow works
also use transformers for language
modeling (BERT, GPT, etc.)

~

. Y1 Y2 Ys Ya
The “classic” transformer

As compared to a sequence .
to sequence RNN model m

position-wise nonlinear
network

— cross attention

position-wise nonlinear position-wise nonlinear
network we’ll discuss network

o1 Seemeen 1111

masked self-attention

Nug
’_\
Nught
[N}
Ny
(%]
Nt
e

repeated N times

|

!

|
B | —
. —
. —
S

 —

self-attention “layer”

82—
—
= —
[NW]
=8 —
w
L —
o
< —
[
< —
bO
L —
W
repeated N times

position-wise encoder

ZJOJ JJ[’le stl

1
0 Y1

position-wise encoder

pTll ’pIzl pIsl

2 3

1 2 3

Combining encoder and decoder values

“Cross-attention”

Much more like the standard attention
from the previous lecture

query: qf = W(fsf

at (decoder) layer ¢, step [

key ke — W]g hf output of position-wise nonlinear network

at (encoder) layer £, step ¢

value: vf = Wlh{

A A
el,t—(ﬂ'kt

), exp(ef,t)
g ¢ =

: S exp(ef’t,)

Y ¢ ¢ cross attention
C E QU
- output

output of position-wise nonlinear network

cross attention

n ¢ £
position-wise nonlinear position-wise nonlinear
network network

o1 P11

masked self-attention

self-attention “layer”

repeated N times

position-wise encoder position-wise encoder

lel le 1]31

in reality, cross-attention is
also multi-headed!

NEAAE
PO?L pljl pzj/ psl

1 2 3 2 3

One last detail: layer normalization

Main idea: batch normalization is very helpful, but hard to use with sequence models
Sequences are different lengths, makes normalizing across the batch hard

Sequences can be very long, so we sometimes have small batches

Simple solution: “layer normalization” — like batch norm, but not across the batch

Batch norm d-dimensional vectors Layer norm
L a1, o 4B « for each sample in batch a different dimensions of a
-dim) Yt
N1 o L/ 1<
p=zda o=\|g2 la-w p=53"al o= =% (e —p)?
i—1 i=1 / i=1 i=1
1-dim
a; — a —
ai=——ty+ 8 a=—ty+5
o o

Putting it all together

The Transformer

Decoder decodes one position at a
time with masked attention

residual connection with LN

hﬁ

= WEReLU(W{al + bf) + b4

residual connection with LN

multi-head cross attention

residual connection with LN

Output
. . FProbabilities
multi-head attention keys and values R
kfi,.o o ki, and vfq, ... 01,
6 layers, each with d =512 Tnear
r ™
. Y (s i)
h; = LayerNorm(a; + h;) =)
passed to next layer ¢ + 1 \ owarg] *
; ; I, ;), A = B.IN ™ | Add a_N-::-rm g
hy = W5 ReLU(Wl a; + bl) + bg r~rLAdd Ao) Multi-Head
> Feed Attention <
2-layer neural net at each position rorvard 7 7 Nox
—
- — N (Foganomm)
af = LayerNorm(hﬁ Ly a,f) ~ 1 »UAdd & Nom Masked
Multi-Head Multi-Head <
essentially a residual connection with LN | [Attention
1T 1 J 1 J
o J R
! ~0—1 Pasitional S
mput: h ositiona - A Pasitional
p t Encoding ®_(;I C;L Encoding
Output: af Input Dutput
Embedding Embedding
concatenates attention from all heads I T
Inouts COutputs
(shifted right)

Vaswani et al. Attention Is All You Need. 2017.

same as encoder only masked

Why transformers?

Downsides:
- Attention computations are technically O(n?)

- Somewhat more complex to implement (positional encodings, etc.)

Benefits:

The benefits seem to vastly outweigh the downsides, and
transformers work much better than RNNs (and LSTMs) in

Many Cases

Arguably one of the most important sequence modeling
improvements of the past decade

Why transformers?

In practice, this means we can use
larger models for the same cost

larger model = better performance

much faster training

Model BLEU Training Cst (FLOPs)
¢ EN-DE EN-FR EN-DE EN-FR

ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0 - 1020
GNMT + RL [38] 24.6 39.92 231017 | 1.4-10%
Convs2S [9] 25.16 4046 96-10* | 1.5-10%
MoE [32] 26.03 4056 2.0-10" | 1.2.10%
Deep-Att + PosUnk Ensemble [39] 40.4 2.0- 1020
GNMT + RL Ensemble [38] 2630 41.16 1.8-10% | 1.1-10%
ConvS2S Ensemble [9] 2636 41.29 77101 Y 1.2.10*
Transformer (base model) 27.3 38.1 3.3.10'8
Transformer (big) 28.4 41.8 2.3.1019

;

great translation results

Vaswani et al. Attention Is All You Need. 2017.

Text summarization

previous state of the art seq2seq model

Model Test perplexity ROUGE-L
seq2seq-attention, L = 500 5.04952 12.7
Transformer-ED, L = 500 2.46645 342
Transformer-D, L = 4000 2.22216 33.6
Transformer-DMCA, no MoE-layer, L 11000 2.05159 36.2
Transformer-DMCA, MoE-128, L = 11000 1.92871 379
Transformer-DMCA, MoE-256, L = 7500 1.90325 38.8

|

lower is better (this metric is similar to 1/likelihood)

WEe’'ll learn more about the power of transformers

as language models next time!

Liu et al. Generating Wikipedia by summarizing

long sequences. 2018.

