
Applications: NLP
Designing, Visualizing and Understanding Deep Neural Networks

CS W182/282A

Instructor: Sergey Levine
UC Berkeley



The Big Idea: Unsupervised Pretraining
Deep learning works best when we have a lot of data

Good news: there is plenty of data of text out there!

Bad news: most of it is unlabeled

1,000s of times more data without labels (i.e., valid English text in books, 
news, web) vs. labeled/paired data (e.g., English/French translations)

The big challenge: how can we use freely available and unlabeled
text data to help us apply deep learning methods to NLP?



What can we do with unlabeled data?

learned 
representation of 

language
[English] [Spanish]

How can we represent these… representations?

local non-contextual 
representations

global context-dependent 
representations

word embeddings pretrained language modelssentence embeddings



Start simple: how do we represent words?

dimensionality = number of possible words

index of this word

not great, not terrible…

The pixels mean 
something!

Not much (not a 
great metric space), 
but they mean 
something

This means basically 
nothing by itself

Maybe if we had a more meaningful representation of words, then learning 
downstream tasks would be much easier!

Meaningful = vectors corresponding to similar words should be close together



Some examples of good embeddings



How do we learn embeddings?
Basic idea: the meaning of a word is determined by what other words occur in close proximity to it

Put another way: the more interchangeable words are, the more similar they are

Example: Seattle hotel vs. Seattle motel

Examples & Images: Christopher Manning, CS224n

Basic principle: pick a representation for each word such that its neighbors 
are “close” under this representation



More formally…

Examples & Images: Christopher Manning, CS224n

Can we predict the neighbors of a word from its embedding value?

looks a bit like a logistic regression model



word2vec

Mikolov et al. “Linguistic Regularities in Continuous Space Word Representations.” 2013.

➢ Why two vectors? Makes optimization easier

➢ What to do at the end? Average them

➢ This then gives us a representation of words!



Making word2vec tractable

Mikolov et al. “Linguistic Regularities in Continuous Space Word Representations.” 2013.

Problem: the vocabulary might be huge denominator might be really costly to compute

Another idea: what if we instead have a binary classification problem (“is this the right word or not”)?

This is not enough! Why?

randomly chosen “negatives”



Making word2vec tractable: summary

Mikolov et al. “Linguistic Regularities in Continuous Space Word Representations.” 2013.



word2vec examples

Mikolov et al. “Linguistic Regularities in Continuous Space Word Representations.” 2013.

This is a little bit 
idealized, most 
relationships are not 
nearly this “nice”



word2vec examples

Mikolov et al. “Linguistic Regularities in Continuous Space Word Representations.” 2013.



word2vec examples

Mikolov et al. “Linguistic Regularities in Continuous Space Word Representations.” 2013.



Word2vec summary

Mikolov et al. “Linguistic Regularities in Continuous Space Word Representations.” 2013.

What do we do we with this?

➢ Use as word representation in place of one-hot vectors

➢ Much more meaningful for downstream applications

➢ Can train word embeddings on large unlabeled corpus, and then use it as 
input into a supervised model trained on a much smaller corpus

➢ Could think of it as a simple type of unsupervised pretraining



Pretrained Language Models



Contextual representations
Word embeddings associate a vector with each word

This can make for a much better representation than just a one-hot vector!

However, the vector does not change if the word is used in different ways!

Let’s play baseball I saw a play yesterday

same word2vec representation, even though they mean different things!

Can we learn representations that depend on context?

High level idea:

“I” “think” “therefore” “I”

“think” “therefore” “I” “am”

use the hidden state as 
the representation for 

downstream tasks

1. Train a language model

2. Run it on a sentence

3. Use its hidden state

Question 1: how to train the best 
language model for this?

Question 2: how to use this 
language model for downstream 
tasks?



The age of Sesame Street characters
ELMo: bidirectional LSTM model used for 
context-dependent embeddings

BERT: transformer language model used 
for context-dependent embeddings

Credit: Jay Alammar: http://jalammar.github.io/illustrated-bert/



ELMo

puppycuteA

Forward LM

puppycuteA

Backward LM

Both the forward and backward LM are trained as language models

Predict the next (or previous) word

together, all these hidden states form 
a representation of the word “cute”



Using ELMo

puppycuteA

Forward LM

puppycuteA

Backward LM

top layer hidden states

learned task-specific weights

learned as part of downstream task!



Using ELMo

puppycuteA

Forward LM

puppycuteA

Backward LM

<START> Un chiot mignon

<EOS>

A cute puppy

Un chiot mignon

This is just an example, the actual ELMo paper does not
test on translation, but does test:
• Question answering
• Textual entailment
• Semantic role labeling
• Coreference resolution
• Named entity extraction
• Sentiment analysis
And LMs help with all of these!



ELMo Summary

puppycuteA

Forward LM

puppycuteA

Backward LM ➢ Train forward and backward language models on a large 
corpus of unlabeled text data

➢ Use the (concatenated) forward and backward LSTM 
states to represent the word in context

➢ Concatenate the ELMo representation to the word 
embedding (or one-hot vector) as an input into a 
downstream task-specific sequence model
▪ This provides a context specific and semantically 

meaningful representation of each token



BERT and Friends



The age of Sesame Street characters
ELMo: bidirectional LSTM model used for 
context-dependent embeddings

BERT: transformer language model used 
for context-dependent embeddings



Can we use a transformer instead?

masked self-attention

position-wise encoder

position-wise nonlinear 
network

Before:

re
p

ea
te

d
 N

x

position-wise softmax

puppycuteA[START]

need masking to have a 
proper language model

Now: ➢ This model has a direction (forward, depends on masking 
used in self-attention)

➢ ELMo is bidirectional, this isn’t

➢ We could train two transformers, and make “transformer 
ELMo”

➢ But is there a better way? Can we simply remove the 
mask in self-attention and have one transformer?
▪ What would go wrong?

(the decoder part 
of a transformer)



Bidirectional transformer LMs

masked self-attention

position-wise encoder

position-wise nonlinear 
network

re
p

ea
te

d
 N

x

position-wise softmax

It’s trivially easy to get the right answer, since 
self-attention can access the “right answer” 
at time t from the input at time t+1!



Bidirectional transformer LMs

masked self-attention

position-wise encoder

position-wise nonlinear 
network

re
p

ea
te

d
 N

x

position-wise softmax

no need to shift things by 
one anymore (no masking)

randomly mask out
some input tokens

mask = replace with [MASK]

I think therefore I am

I [MASK] therefore I [MASK]Input:

Output:

Main idea: needing to predict missing words forces the 
model to “work hard” to learn a good representation

Without the need for masked self-attention!

This makes it bidirectional

BERT is essentially 
the “encoder” part of 
a transformer with 
15% of inputs 
replaced with [MASK]



Training BERT

input consists of two sentences
why?

many downstream tasks require 
processing two sentences:

question answering

natural language inference

pairs of sentences in the data 
are transformed in two ways:

1. Randomly replace 15% of 
the tokens with [MASK]

2. Randomly swap the order of 
the sentences 50% of the time

reconstruct all tokens at each time step
(must predict actual token in place of [MASK])

forces learning context-dependent word-level representations

binary classifier output:

does first sentence follow the 
second sentence, or precede it?

this forces 
learning 
sentence-level
representations



Using BERT
binary classifier output:

A before B vs. A after B

task classification output

entailment classification

semantic equivalence (e.g., Quora question pair)

sentiment classification

1. Put a cross-entropy loss on only the first 
output (replaces the sentence order classifier)

2. Finetune the whole model end-to-end on the 
new task



Using BERT

finetune named entity 
label for each position

(person name, location, 
other categories)

highlight which 
span of paragraph 

contains answer

classification tasks



Using BERT to get features
We can also pull out features, just like with ELMo!

Credit: Jay Alammar: http://jalammar.github.io/illustrated-bert/



Using BERT to get features
We can also pull out features, just like with ELMo!

Credit: Jay Alammar: http://jalammar.github.io/illustrated-bert/



BERT results are extremely good

GLUE test result (battery of varied natural language understanding tasks)

12 layers
24 layers

Since then, it has been applied to nearly 
every NLP task you can imagine, and often 
makes a huge difference in performance



GPT et al.

masked self-attention

position-wise encoder

position-wise nonlinear 
network

re
p

ea
te

d
 N

x

position-wise softmax

➢ One-directional (forward) transformer 
models do have one big advantage 
over BERT. Can you guess what it is?

➢ Generation is not really possible with 
BERT, but a forward (masked 
attention) model can do it!

➢ GPT (GPT-2, GPT-3, etc.) is a classic 
example of this



GPT et al.

masked self-attention

position-wise encoder

position-wise nonlinear 
network

re
p

ea
te

d
 N

x

position-wise softmax



Pretrained language models summary

bidirectional transformer one-directional transformer bidirectional LSTM

+ great representations

- can’t generate text

+ can generate text

- OK representations

- OK representations

(largely supplanted by BERT)



Pretrained language models summary

➢ Language models can be trained on very large and unlabeled 
datasets of text (e.g., Wikipedia text). Often these are 100s or 
even 1000s of millions of sentences!

➢ Internal learned representations depend on context: the 
meaning of a word is informed by the whole sentence!

➢ Can even get us representations of entire sentences (e.g., the 
first output token for BERT)

➢ Can be used to either extract representations to replace 
standard word embeddings…

➢ …or directly finetuned on downstream tasks (which means we 
modify all the weights in the whole language model, rather 
than just using pretrained model hidden states)

This is very important in modern NLP 
because it works extremely well!


