Learning-Based Control & Imitation

Designing, Visualizing and Understanding Deep Neural Networks

CS W182/282A

Instructor: Sergey Levine UC Berkeley

So far: learning to *predict*

What about learning to **control**?

From *prediction* to *control*: challenges

i.i.d.:
$$p(\mathcal{D}) = \prod_{i} p(y_i | x_i) p(x_i)$$

output y_1 does not change x_2

this is **very** important, because it allows us to just focus on getting the highest **average** accuracy over the whole dataset

making the wrong choice here is a disaster

making the wrong choice here is perhaps OK

From *prediction* to *control*: challenges

Ground truth labels:

"puppy"

Abstract goals:

"drive to the grocery store"

> what steering command is that?

From *prediction* to *control*: challenges

- i.i.d. distributed data (each datapoint is independent)
- ground truth supervision
- objective is to predict the right label

These are not **just** issues for control: in many cases, real-world deployment of ML has these same **feedback** issues **Example:** decisions made by a traffic prediction system might affect the route that people take, which changes traffic

- each decision can change future inputs (not independent)
- supervision may be high-level (e.g., a goal)
- objective is to accomplish the task

We will **build up** toward a **reinforcement learning** system that addresses all of these issues, but we'll do so one piece at a time...

Terminology

 \mathbf{o}_t – observation

Terminology

Aside: notation

 $\mathbf{s}_t - ext{state}$ $\mathbf{a}_t - ext{action}$

Richard Bellman

Lev Pontryagin

Imitation Learning

behavioral cloning

Does it work?

No!

Where have we seen this before?

Does it work? Yes!

Getting behavioral cloning to work

What is the problem?

What is the problem?

the problem: $p_{\text{data}}(\mathbf{o}_t) \neq p_{\pi_{\theta}}(\mathbf{o}_t)$

we got unlucky, but now the model is completely confused it never saw "I drive" before This is called **distributional shift**, because the input distribution **shifts** from true strings (at training) to synthetic strings (at test time)

- training trajectory π_{θ} expected trajectory

This is the same problem!

Why not use the same solution?

the problem: $p_{\text{data}}(\mathbf{o}_t) \neq p_{\pi_{\theta}}(\mathbf{o}_t)$

Now: control

we could take the predicted action $\mathbf{a}_t \sim \pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ and observe the resulting \mathbf{o}_{t+1}

but this requires interacting with the world! why?

we don't know $p(\mathbf{s}_{t+1}|\mathbf{s}_t, \mathbf{a}_t)!$

Can we mitigate the problem?

the problem: $p_{\text{data}}(\mathbf{o}_t) \neq p_{\pi_{\theta}}(\mathbf{o}_t)$

if $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ is very accurate maybe $p_{\text{data}}(\mathbf{o}_t) \approx p_{\theta}(\mathbf{o}_t)$ Why might we fail to fit the expert?

 $\pi_{ heta}(\mathbf{a}_t | \mathbf{o}_t)$

- 1. Non-Markovian behavior
- 2. Multimodal behavior

If we see the same thing twice, we do the same thing twice, regardless of what happened before behavior depends only on current observation

 $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_1, ..., \mathbf{o}_t)$

behavior depends on all past observations

Often very unnatural for human demonstrators

How can we use the whole history?

variable number of frames, too many weights

How can we use the whole history?

Typically, LSTM cells work better here

Why might we fail to fit the expert?

- 1. Non-Markovian behavior
- 2. Multimodal behavior

- 1. Output mixture of Gaussians
- 2. Latent variable models
- 3. Autoregressive discretization

Why might we fail to fit the expert?

- Output mixture of Gaussians
- 2. Latent variable models
- 3. Autoregressive discretization

Why might we fail to fit the expert?

- 1. Output mixture of Gaussians
- 2. Latent variable models
- 3. Autoregressive discretization

Look up some of these:

- Conditional variational autoencoder
- Normalizing flow/realNVP
- Stein variational gradient descent

Does it work? Yes!

Why did that work?

Summary

- In principle it should not work
 - Distribution mismatch problem
- Sometimes works well
 - Hacks (e.g. left/right images)
 - Models with memory (i.e., RNNs)
 - Better distribution modeling
 - Generally taking care to get high accuracy

A (perhaps) better approach

Can we make it work more often?

Can we make it work more often?

can we make $p_{\text{data}}(\mathbf{o}_t) = p_{\pi_{\theta}}(\mathbf{o}_t)$?

idea: instead of being clever about $p_{\pi_{\theta}}(\mathbf{o}_t)$, be clever about $p_{\text{data}}(\mathbf{o}_t)$!

DAgger: Dataset Aggregation

goal: collect training data from $p_{\pi_{\theta}}(\mathbf{o}_t)$ instead of $p_{\text{data}}(\mathbf{o}_t)$ how? just run $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ but need labels \mathbf{a}_t !

1. train $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$ 2. run $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

DAgger Example

What's the problem?

$$(\mathbf{a}_t | \mathbf{o}_t)$$

$$\mathbf{o}_t \quad \mathbf{o}_t \quad \mathbf{a}_t$$

Summary and takeaways

- In principle it should not work
 - Distribution mismatch problem
 - DAgger can address this, but requires costly data collection and labeling
- Sometimes works well
 - Requires a bit of (heuristic) hacks, and very good (high-accuracy) models

My recommendation: try behavioral cloning first, but prepare to be disappointed

Next time

- i.i.d. distributed data (each datapoint is independent)
- ground truth supervision
- objective is to predict the right label

- each decision can change future inputs (not independent)
- supervision may be high-level (e.g., a goal)
- objective is to accomplish the task

We'll tackle these issues with reinforcement learning