
Reinforcement Learning
Designing, Visualizing and Understanding Deep Neural Networks

CS W182/282A

Instructor: Sergey Levine
UC Berkeley



Recap: policy gradients

generate 
samples (i.e. 

run the policy)

fit a model to 
estimate return

improve the 
policy

“reward to go”



Improving the policy gradient

“reward to go”



What about the baseline?



State & state-action value functions

the better this estimate, the lower the variance

unbiased, but high variance single-sample estimate

generate 
samples (i.e. 

run the policy)

fit a model to 
estimate return

improve the 
policy



Value function fitting

generate 
samples (i.e. 

run the policy)

fit a model to 
estimate return

improve the 
policy



Policy evaluation
generate 

samples (i.e. 
run the policy)

fit a model to 
estimate return

improve the 
policy



Monte Carlo evaluation with function approximation

the same function should 
fit multiple samples!



Can we do better?



Policy evaluation examples

TD-Gammon, Gerald Tesauro 1992 AlphaGo, Silver et al. 2016



An actor-critic algorithm

generate 
samples (i.e. 

run the policy)

fit a model to 
estimate return

improve the 
policy



Aside: discount factors

episodic tasks continuous/cyclical tasks



Actor-critic algorithms (with discount)



Architecture design

two network design + simple & stable
- no shared features between actor & critic

shared network design



Can we use just a value function?



Can we omit policy gradient completely?

forget policies, let’s just do this!

generate 
samples (i.e. 

run the policy)

fit a model to 
estimate return

improve the 
policy



Policy iteration

High level idea:

generate 
samples (i.e. 

run the policy)

fit a model to 
estimate return

improve the 
policy

how to do this?



Dynamic programming

0.2 0.3 0.4

0.5

0.6

0.7

0.3 0.3

0.3

0.3

0.40.40.4

0.5 0.5 0.5

just use the current estimate here



Policy iteration with dynamic programming

generate 
samples (i.e. 

run the policy)

fit a model to 
estimate return

improve the 
policy

0.2 0.3 0.4

0.5

0.6

0.7

0.3 0.3

0.3

0.3

0.40.40.4

0.5 0.5 0.5



Even simpler dynamic programming

approximates the new value!

generate 
samples (i.e. 

run the policy)

fit a model to 
estimate return

improve the 
policy



Fitted value iteration

generate 
samples (i.e. 

run the policy)

fit a model to 
estimate return

improve the 
policy

curse of 
dimensionality



What if we don’t know the transition dynamics?

need to know outcomes 
for different actions!

Back to policy iteration…

can fit this using samples



Can we do the “max” trick again?

doesn’t require simulation of actions! 

+ works even for off-policy samples (unlike actor-critic)

+ only one network, no high-variance policy gradient

- no convergence guarantees for non-linear function approximation (more on this later)

forget policy, compute value directly

can we do this with Q-values also, without knowing the transitions?



Fitted Q-iteration



Q-Learning



Online Q-learning algorithms

generate 
samples (i.e. 

run the policy)

fit a model to 
estimate return

improve the 
policy

off policy, so many choices here!



Exploration with Q-learning

“epsilon-greedy”

final policy:

why is this a bad idea for step 1? 

“Boltzmann exploration”



What’s wrong?

Q-learning is not gradient descent!

no gradient through target value



Correlated samples in online Q-learning
- sequential states are strongly correlated

- target value is always changing



Replay buffers

special case with K = 1, and one gradient step

any policy will work! (with broad support)

just load data from a buffer here

dataset of transitions

Fitted Q-iteration

still use one gradient step



Replay buffers

dataset of transitions
(“replay buffer”)

off-policy
Q-learning

+ samples are no longer correlated

+ multiple samples in the batch (low-variance gradient)

but where does the data come from?

need to periodically feed the replay buffer…



Putting it together

K = 1 is common, though 
larger K more efficient

dataset of transitions
(“replay buffer”)

off-policy
Q-learning



What’s wrong?

Q-learning is not gradient descent!

no gradient through target value

use replay buffer

This is still a 
problem!



Q-Learning and Regression

one gradient step, moving target 

perfectly well-defined, stable regression



Q-Learning with target networks

targets don’t change in inner loop!

su
p

e
rvise

d
 re

gre
ssio

n



“Classic” deep Q-learning algorithm (DQN)

Mnih et al. ‘13



Representing the Q-function

more common with continuous actions

more common with discrete actions



Back to actor-critic
off policy, so many choices here!

with continuous actions, this is very inconvenient (but not impossible)

Idea: use actor-critic, but with Q-functions (to train off-policy)

policy gradient



Simple practical tips for Q-learning

• Q-learning takes some care to stabilize
• Test on easy, reliable tasks first, make sure your implementation is correct

• Large replay buffers help improve stability
• Looks more like fitted Q-iteration

• It takes time, be patient – might be no better than random for a while

• Start with high exploration (epsilon) and gradually reduce
Slide partly borrowed from J. Schulman



Q-learning with convolutional networks

• “Human-level control 
through deep 
reinforcement learning,” 
Mnih et al. ‘13

• Q-learning with 
convolutional networks

• Uses replay buffer and 
target network

• One-step backup

• One gradient step

• Can be improved a lot 
with double Q-learning 
(and other tricks)



Large-scale Q-learning with continuous actions 
(QT-Opt)

live data collection

stored data from all 
past experiments

training buffers Bellman updaters

training threads

Kalashnikov, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan, 
Vanhoucke, Levine. QT-Opt: Scalable Deep Reinforcement Learning of Vision-
Based Robotic Manipulation Skills



Q-learning suggested readings
• Classic papers

• Watkins. (1989). Learning from delayed rewards: introduces Q-learning
• Riedmiller. (2005). Neural fitted Q-iteration: batch-mode Q-learning with neural 

networks

• Deep reinforcement learning Q-learning papers
• Lange, Riedmiller. (2010). Deep auto-encoder neural networks in reinforcement 

learning: early image-based Q-learning method using autoencoders to construct 
embeddings

• Mnih et al. (2013). Human-level control through deep reinforcement learning: Q-
learning with convolutional networks for playing Atari.

• Van Hasselt, Guez, Silver. (2015). Deep reinforcement learning with double Q-learning: a 
very effective trick to improve performance of deep Q-learning.

• Lillicrap et al. (2016). Continuous control with deep reinforcement learning: continuous 
Q-learning with actor network for approximate maximization.

• Gu, Lillicrap, Stuskever, L. (2016). Continuous deep Q-learning with model-based 
acceleration: continuous Q-learning with action-quadratic value functions.

• Wang, Schaul, Hessel, van Hasselt, Lanctot, de Freitas (2016). Dueling network 
architectures for deep reinforcement learning: separates value and advantage 
estimation in Q-function.


