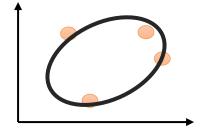
Generative Modeling

Designing, Visualizing and Understanding Deep Neural Networks

CS W182/282A

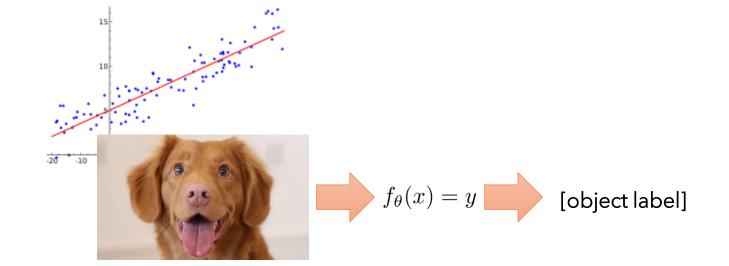
Instructor: Sergey Levine UC Berkeley

Probabilistic models



Why would we want to do this?

p(x)



Generative models

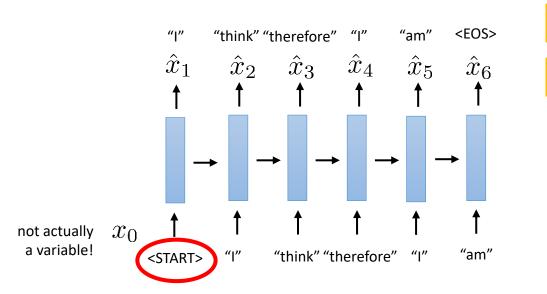
p(x)

 $\mathcal{N}(\mu, \sigma)$

This is called **unsupervised learning**

Just different ways to solve the same problem!

 $p(x) = p(x_1)p(x_2)p(x_3)p(x$

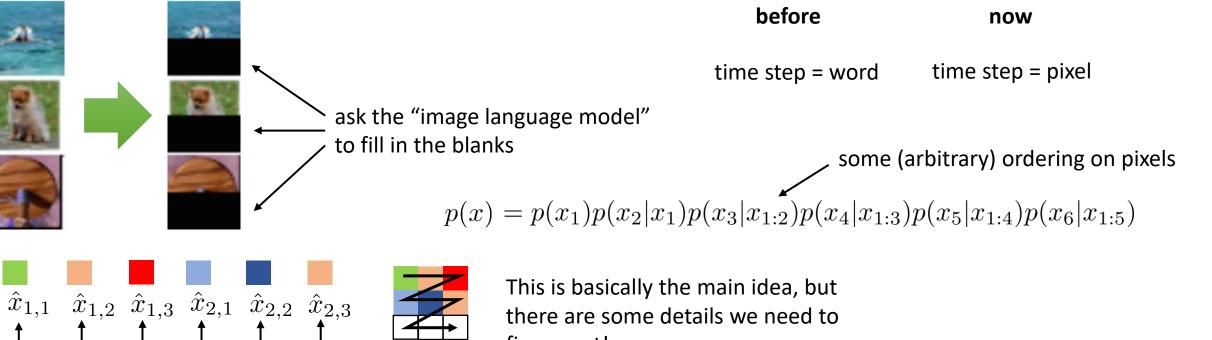


Why would we want to do this?

Same reasons as language modeling!

- Unsupervised pretraining on lots of data
- Representation learning
- Pretraining for later finetuning
- Actually generating things!

Can we "language model" images?



<START:

figure out!

- How to order the pixels?
- What kind of model to use?

Van den Oord et al. Pixel Recurrent Neural Networks. 2016.

Autoregressive generative models

Main principle for training:

- 1. Divide up x into dimensions x_1, \ldots, x_n
- 2. Discretize each x_i into k values
- 3. Model p(x) via the chain rule

 $p(x) = p(x_1)p(x_2|x_1)p(x_3|x_{1:2})p(x_4|x_{1:3})p(x_5|x_{1:4})p(x_6|x_{1:5})$

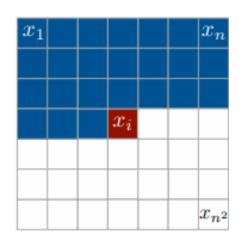
4. Use your favorite sequence model to model p(x)

Using autoregressive generative models:

Sampling: ancestral sampling in sequence $(x_1, \text{ then } x_2, \text{ etc.})$ **Completion**: feed in actual values for known x_i values **Representations**: same idea as ELMo or BERT

each of these is just a softmax

PixelRNN



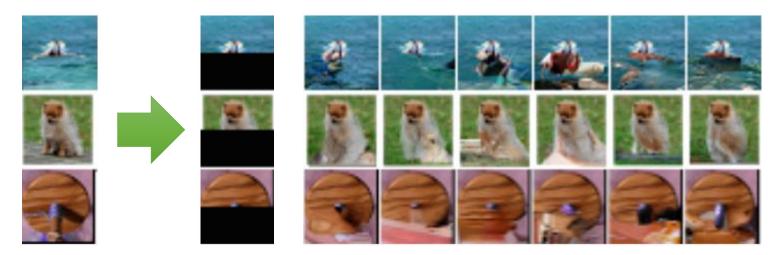
Pixels generated one at a time, left-to-right, top-to-bottom:

$$p(\mathbf{x}) = \prod_{i=1}^{n^2} p(x_i | x_1, ..., x_{i-1})$$

Generate one color channel at a time:

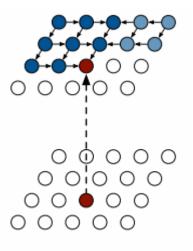
 $p(x_{i,R}|\mathbf{x}_{<i})p(x_{i,G}|\mathbf{x}_{<i}, x_{i,R})p(x_{i,B}|\mathbf{x}_{<i}, x_{i,R}, x_{i,G})$

256-way softmax



Some practical considerations:

- > It's very slow
- Row-by-row LSTMs might struggle to capture spatial context (pixels right above are "far away")
- Many practical improvements and better architectures are possible!

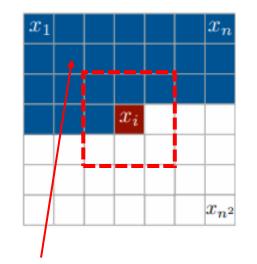


Diagonal BiLSTM

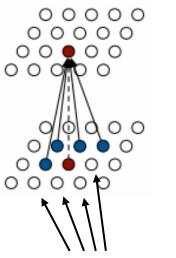
Van den Oord et al. Pixel Recurrent Neural Networks. 2016.

PixelCNN

Idea: make this much faster by not building a full RNN over all pixels, but just using a convolution to determine the value of a pixel based on its neighborhood



this pixel still influences x_i ! why?

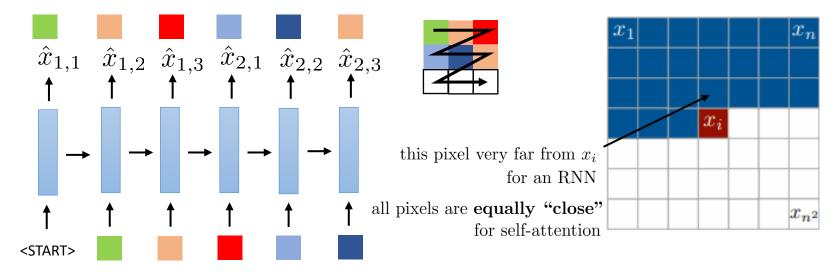


Question: can we parallelize this? During training? During generation?

these are **masked out** because they haven't been generated yet

Van den Oord et al. Pixel Recurrent Neural Networks. 2016.

Pixel Transformer

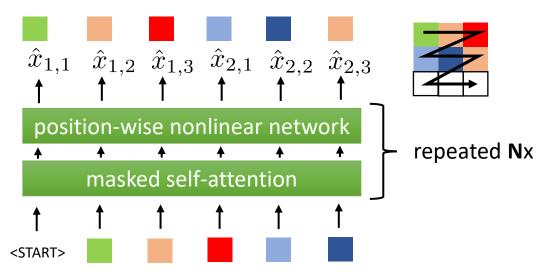


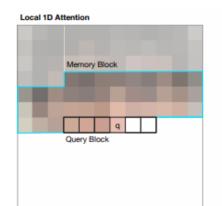
Problem: the number of pixels can be **huge**

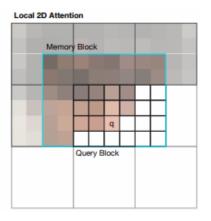
attention can become prohibitively expensive

Idea: only compute attention for pixels that are not too far away

(looks a little like PixelCNN)







Parmar et al. Image Transformer. 2018.

PixelRNN vs. Pixel Transformer

PixelRNN

Transformer

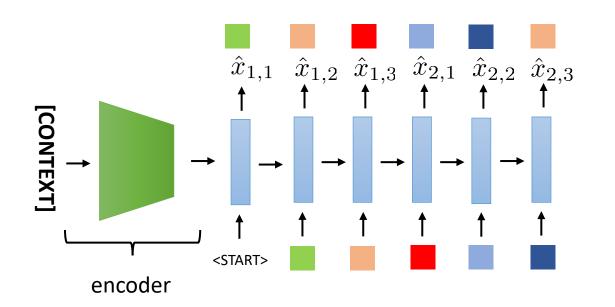
All models trained on CIFAR-10

Conditional autoregressive models

What if we want to generate something conditioned on another piece of information?

Examples:

- Generate images of specific types of objects (e.g., categories)
- > Generate distributions over actions for imitation learning conditioned on the observation
- Many other examples!



Just like conditional language models!

Encoder can be **extremely simple** (e.g., generate images of a class)

Encoder can be **extremely complex** (e.g., multimodal policy in IL)

Conditional autoregressive models

Van den Oord et al. Pixel Recurrent Neural Networks. 2016.

Tradeoffs and considerations

> Autoregressive generative models are "language models" for other types of data

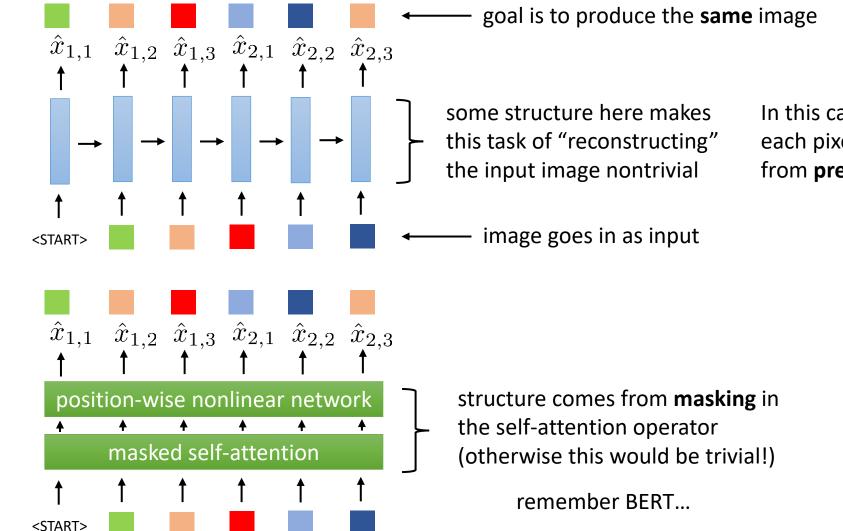
 Though more accurate to say that language models are just a special type of autoregressive generative model

> Can represent autoregressive models in many different ways

- RNNs (e.g., LSTMs)
- Local context models like PixelCNNs
- Transformers
- Tradeoffs compared to other models we'll learn about:
 - + provide full distribution with probabilities
 - + conceptually very simple
 - very slow for large datapoints (e.g., images)
 - generally limited in image resolution

Autoencoders

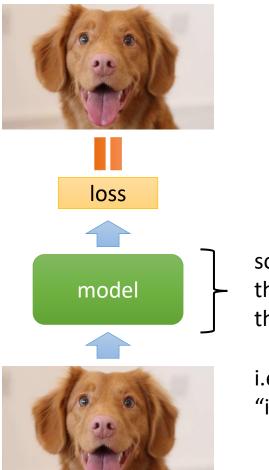
A 30,000 ft view...



In this case, it's the fact that each pixel must be constructed from **preceding** pixels

A 30,000 ft view...

A general design for generative models?



some structure here makes this task of "reconstructing" the input image nontrivial

i.e., prevents learning an "identity function"

Examples of structure that we've seen:

- RNN/LSTM sequence models that must predict a pixel's value based only on "previous" pixels
- "PixelCNN" models that must predict a pixel's value based on a (masked) neighborhood
- Pixel transformer, which must make predictions based on masked self-attention

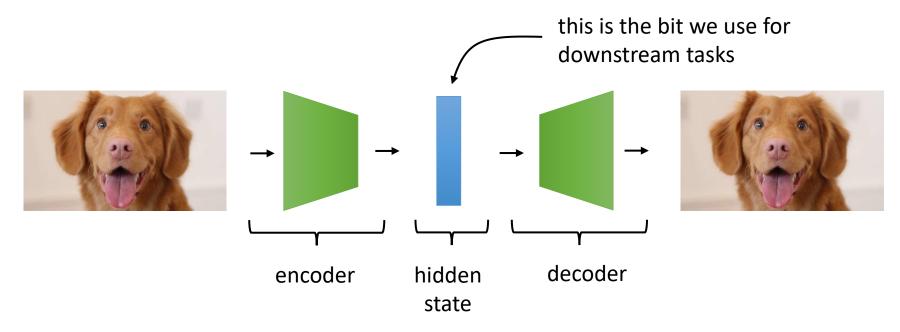
This is all **spatial** structure, can we use more abstract structure instead?

The autoencoder principle

Basic idea: train a network that encodes an image into some hidden state, and then decodes that image as accurately as possible from that hidden state

Such a network is called an autoencoder

Forcing structure: something about the design of the model, or in the data processing or regularization, must force the autoencoder to learn a **structured** representation



The types of autoencoders

Forcing structure: something about the design of the model, or in the data processing or regularization, must force the autoencoder to learn a **structured** representation

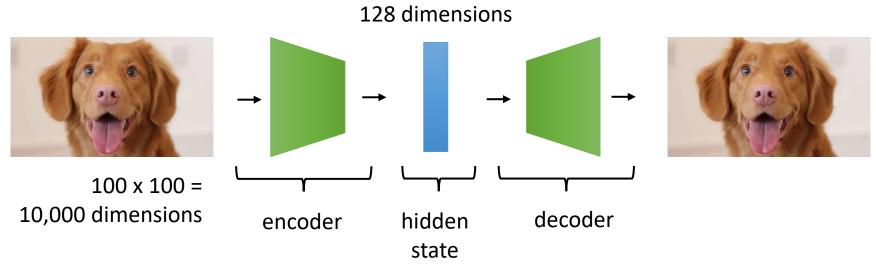
Dimensionality: make the hidden state smaller than the input/output, so that the network must compress it

Sparsity: force the hidden state to be sparse (most entries are zero), so that the network must compress the input

Denoising: corrupt the input with noise, forcing the autoencoder to learn to distinguish noise from signal

Probabilistic modeling: force the hidden state to agree with a prior distribution (this will be covered next time)

(Classic) Bottleneck autoencoder

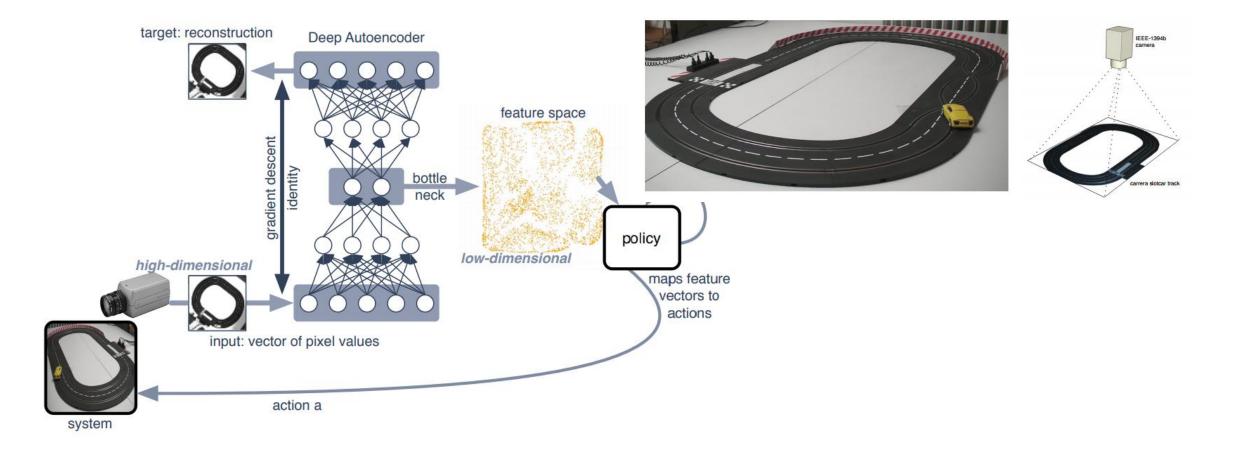


This has some interesting properties:

- If both encoder and decoder are linear (which is usually not very interesting), this exactly recovers PCA
- Can be viewed as "non-linear dimensionality reduction" could be useful simply because dimensionality is lower and we can use various algorithms that are only tractable in low-dimensional spaces (e.g., discretization)

Today, this design is rather antiquated and rarely used, but good to know about historically

Bottleneck autoencoder example



Lange & Riedmiller. Autonomous reinforcement learning from raw visual data. 2012.

Sparse autoencoder

Idea: can we describe the input with a small set of "attributes"?

This might be a more **compressed** and **structured** representation

Aside:

This idea originated in neuroscience, where researchers believe that the brain uses **sparse** representations (see "sparse coding")

Pixel (0,0): #FE057D Pixel (0,1): #FD0263 Pixel (0,2): #E1065F

NOT structured

"dense": most values non-zero

Idea: "sparse" representations are going to be more structured!

has_ears: 1 has_wings: 0 has_wheels: 0

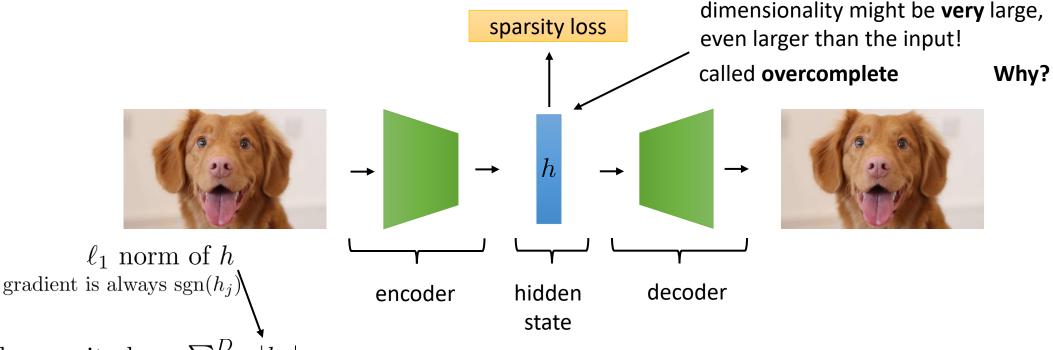
very structured!

"sparse": most values are zero

there are many possible "attributes," and most images don't have most of the attributes

Sparse autoencoder

"L2 regularization"



simple sparsity loss: $\sum_{j=1}^{D} |h_j|$

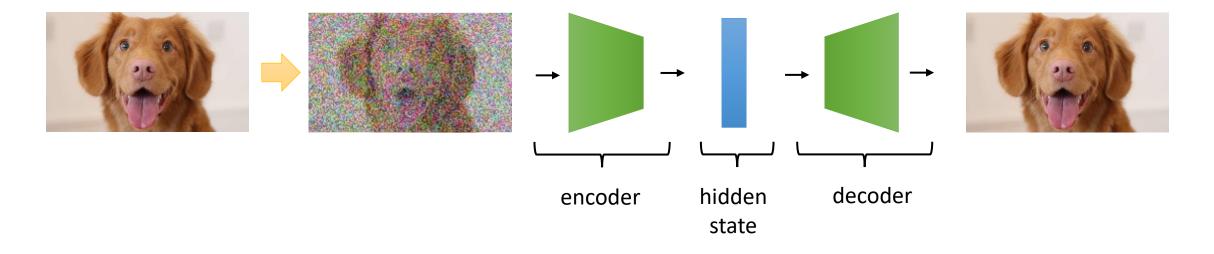
"L1 regularization"

There are other kinds of sparsity losses/models:

- Lifetime sparsity
- Spike and slab models

Denoising autoencoder

Idea: a good model that has learned meaningful structure should "fill in the blanks"



There are **many variants** on this basic idea, and this is one of the most widely used simple autoencoder designs

The types of autoencoders

Forcing structure: something about the design of the model, or in the data processing or regularization, must force the autoencoder to learn a **structured** representation

Dimensionality: make the hidden state smaller than the input/output, so that the network must compress it

- + very simple to implement
- simply reducing dimensionality often does not provide the structure we want

Sparsity: force the hidden state to be sparse (most entries are zero), so that the network must compress the input

- + principled approach that can provide a "disentangled" representation
- harder in practice, requires choosing the regularizer and adjusting hyperparameters

Denoising: corrupt the input with noise, forcing the autoencoder to learn to distinguish noise from signal

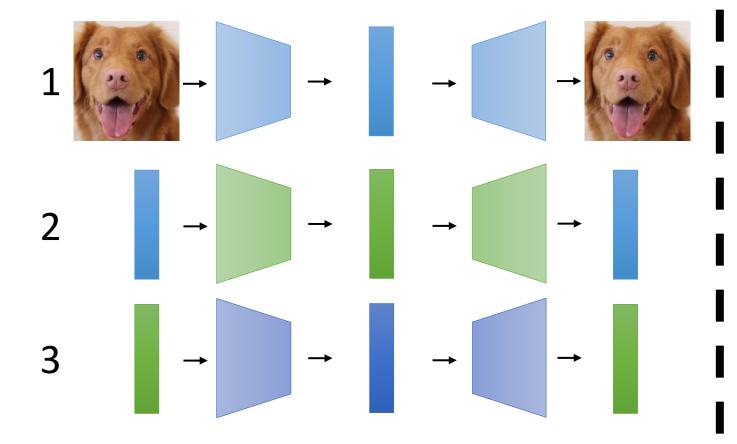
- + very simple to implement
- not clear which layer to choose for the bottleneck, many ad-hoc choices (e.g., how much noise to add)

Probabilistic modeling: force the hidden state to agree with a prior distribution (this will be covered next time)

We'll discuss this design in much more detail in the next lecture!

Layerwise pretraining

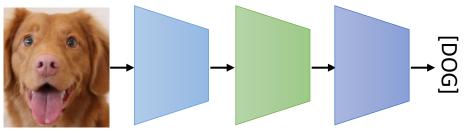
The early days of deep learning...



For a while (2006-2009 or so), this was one of the dominant ways to train **deep** networks

Then we got a lot better at training deep networks end-to-end (ReLU, batch norm, better hyperparameter tuning), and largely stopped doing this

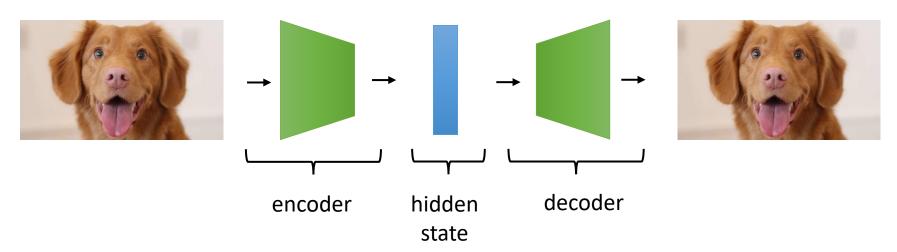
Correspondingly, autoencoders became less important, but they are still useful!



Autoencoders today

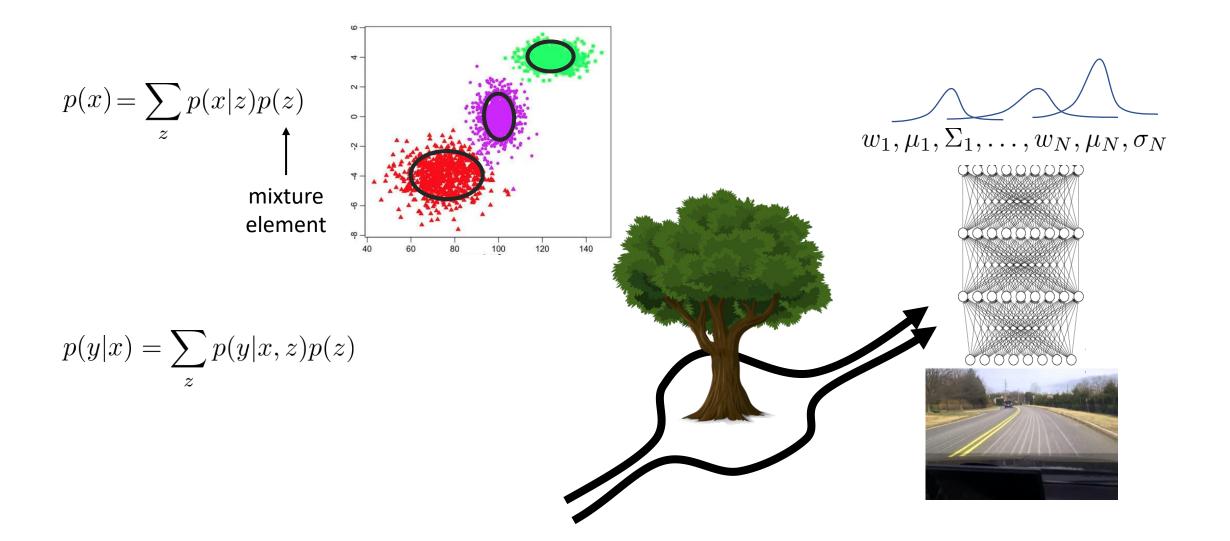
> Much **less** widely used these days because there are better alternatives

- Representation learning: VAEs, contrastive learning
- **Generation:** GANs, VAEs, autoregressive models
- Still a viable option for "quick and dirty" representation learning that is very fast and can work OK
- > **Big problem:** sampling (generation) from an autoencoder is hard, which limits its uses
 - The variational autoencoder (VAE) addresses this, and is the most widely used autoencoder today – we will cover this next time!

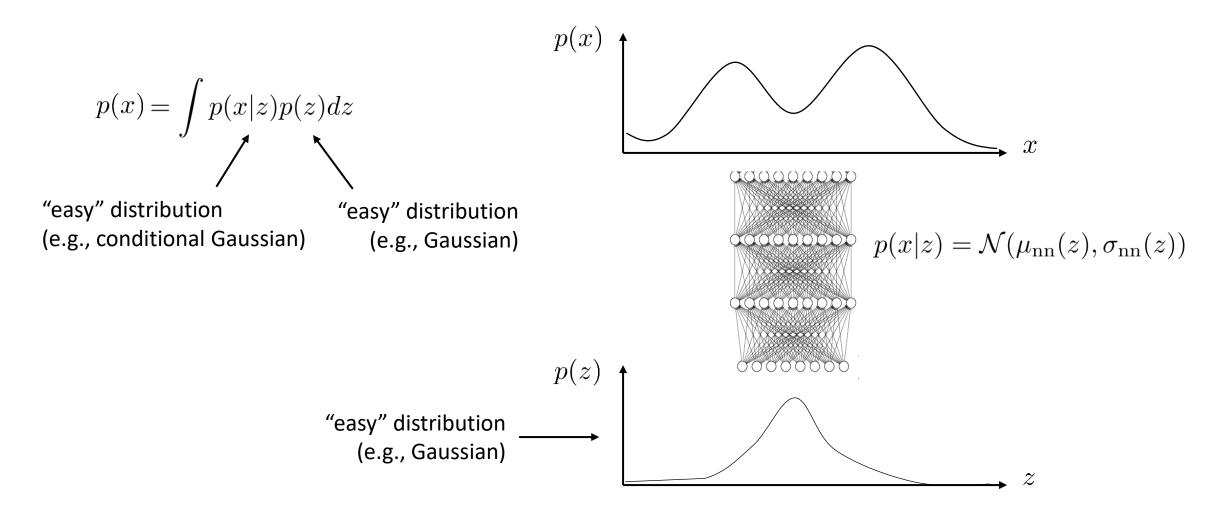


Latent Variable Models

Latent variable models



Latent variable models in general



How do we train latent variable models?

the model: $p_{\theta}(x)$

the data: $\mathcal{D} = \{x_1, x_2, x_3, \dots, x_N\}$

maximum likelihood fit:

$$\theta \leftarrow \arg \max_{\theta} \frac{1}{N} \sum_{i} \log p_{\theta}(x_{i}) \qquad p(x) = \int p(x|z)p(z)dz$$
$$\theta \leftarrow \arg \max_{\theta} \frac{1}{N} \sum_{i} \log \left(\int p_{\theta}(x_{i}|z)p(z)dz \right)$$

completely intractable

Estimating the log-likelihood

alternative: *expected* log-likelihood:

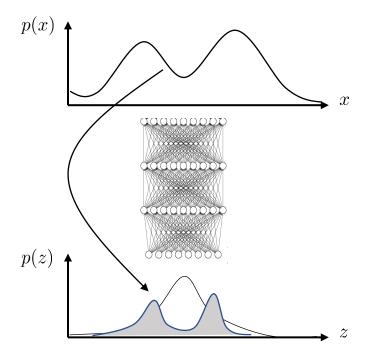
 $\theta \leftarrow \arg\max_{\theta} \frac{1}{N} \sum_{i} E_{z \sim p(z|x_i)} [\log p_{\theta}(x_i, z)]$

but... how do we calculate $p(z|x_i)$?

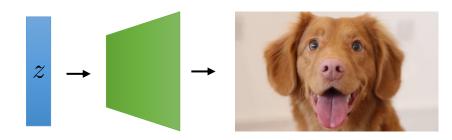
this is called **probabilistic inference**

intuition: "guess" most likely z given x_i , and pretend it's the right one

...but there are many possible values of z so use the distribution $p(z|x_i)$



Latent variable models in deep learning



 $p(z) \quad p_{\theta}(x|z)$ $\mathcal{N}(0, \mathbf{I})$

Using the model for **generation**:

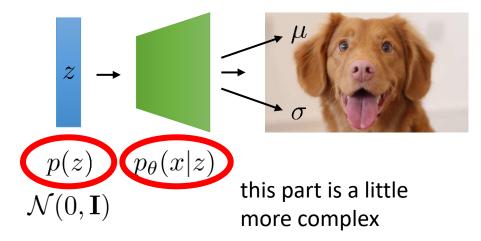
A latent variable deep generative model is (usually) just a model that turns random numbers into valid samples (e.g., images)

Please don't tell anyone I said this, it destroys the mystique

There are many types of such models: VAEs, GANs, normalizing flows, etc.

- 1. sample $z \sim p(z)$ "generate a vector of random numbers"
- 2. sample $x \sim p(x|z)$
- "turn that vector of random numbers into an image"
- **Today:** how do we represent and use this
- Next time: how do we train this

Representing latent variable models



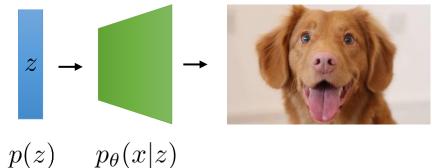
this part is easy, just generate (e.g.) Gaussian random numbers

This just reduces _ to MSE loss!

How do we represent the distribution over x? **Option 1**: Pixels are continuous-valued $p_{\theta}(x|z) = \mathcal{N}(\mu_{\theta}(z); \sigma_{\theta}(z))$ mean is a neural variance is (optionally) a net function neural net function

easy choice: let σ just be a constant
either a learned constant (independent of z)
→ or chosen manually (e.g., 1)

Representing latent variable models



 $p(z) \quad p_{\theta}(x) \\ \mathcal{N}(0, \mathbf{I})$

How do we represent the distribution over x? Option 2: Pixels are discrete-valued

Could just a 256-way softmax, just like in PixelRNN or PixelCNN! (this works very well, but is a little bit slow)

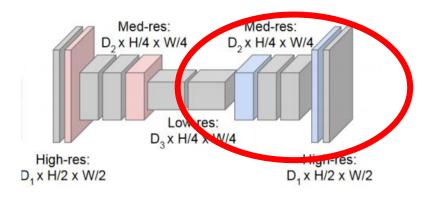
Other choices (not covered in this lecture): discretized logistic, binary cross-entropy

especially common for best performing models

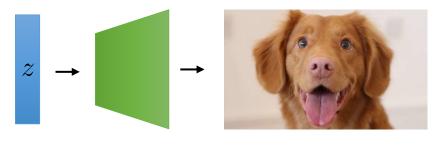
Representing latent variable models

works well for tiny images (e.g., MNIST) or non-image data

Better choice: transpose convolutions



Training latent variable models



 $p(z) \quad p_{\theta}(x|z)$ $\mathcal{N}(0, \mathbf{I})$

Three basic choices:

- 1. Perform inference to figure out $p(z|x_i)$ for each training image x_i Then minimize expected NLL $E_{p(z|x_i)}[-\log p(x_i|z)]$
- 2. Use an *invertible* mapping z to x **normalizing flows**
- 3. Match the distribution $E_{z \sim p(z)}[p_{\theta}(x|z)]$ to data distribution

generative adversarial networks (GANs)

1a. sample $z \sim p(z|x_i)$ /1b. reduce $-\log p(x_i|z)$ with SGD

variational autoencoders (VAEs)