
Generative Modeling
Designing, Visualizing and Understanding Deep Neural Networks

CS W182/282A

Instructor: Sergey Levine
UC Berkeley



Probabilistic models

[object label]

Why would we want to do this?



Generative models

“I” “think” “therefore” “I”

“think” “therefore” “I” “am”

“am”

<EOS>

<START>

“I”

not actually 
a variable!

Just different ways to solve the same problem!

Why would we want to do this?

Same reasons as language modeling!

➢ Unsupervised pretraining on lots of data

➢ Representation learning

➢ Pretraining for later finetuning

➢ Actually generating things!

Today: can we go from “language models” to “everything models”?

This is called unsupervised learning



Can we “language model” images?

Van den Oord et al. Pixel Recurrent Neural Networks. 2016.

ask the “image language model” 
to fill in the blanks

before now

time step = word time step = pixel

some (arbitrary) ordering on pixels

<START>

This is basically the main idea, but 
there are some details we need to 
figure out!

➢ How to order the pixels?

➢ What kind of model to use?



Autoregressive generative models
Main principle for training:

each of these is just a softmax

Using autoregressive generative models:



PixelRNN

Van den Oord et al. Pixel Recurrent Neural Networks. 2016.

Pixels generated one at a time, 
left-to-right, top-to-bottom:

Generate one color channel at a time:

256-way softmax

Some practical considerations:

➢ It’s very slow

➢ Row-by-row LSTMs might struggle to 
capture spatial context (pixels right 
above are “far away”)

➢ Many practical improvements and 
better architectures are possible!



PixelCNN

Van den Oord et al. Pixel Recurrent Neural Networks. 2016.

these are masked out because 
they haven’t been generated yet

Idea: make this much faster by not building a full RNN over all pixels, but just using 
a convolution to determine the value of a pixel based on its neighborhood

Question: can we parallelize this?

During training?

During generation?



Pixel Transformer

Parmar et al. Image Transformer. 2018.

<START>

<START>

masked self-attention

position-wise nonlinear network
repeated Nx

Problem: the number of pixels 
can be huge

attention can become 
prohibitively expensive

Idea: only compute attention for 
pixels that are not too far away

(looks a little like PixelCNN)



PixelRNN vs. Pixel Transformer

Parmar et al. Image Transformer. 2018.

TransformerPixelRNN

All models trained 
on CIFAR-10



Conditional autoregressive models
What if we want to generate something conditioned on another piece of information?

Examples:

➢ Generate images of specific types of objects (e.g., categories)

➢ Generate distributions over actions for imitation learning conditioned on the observation

➢ Many other examples!

<START>

[C
O

N
TEX

T]

encoder

Just like conditional language models!

Encoder can be extremely simple
(e.g., generate images of a class)

Encoder can be extremely complex
(e.g., multimodal policy in IL)



Conditional autoregressive models

Van den Oord et al. Pixel Recurrent Neural Networks. 2016.



Tradeoffs and considerations
➢ Autoregressive generative models are “language models” for other types of data

▪ Though more accurate to say that language models are just a special type of 
autoregressive generative model

➢ Can represent autoregressive models in many different ways
▪ RNNs (e.g., LSTMs)
▪ Local context models like PixelCNNs
▪ Transformers

➢ Tradeoffs compared to other models we’ll learn about:
+ provide full distribution with probabilities
+ conceptually very simple
- very slow for large datapoints (e.g., images)
- generally limited in image resolution



Autoencoders



A 30,000 ft view…

<START> image goes in as input

goal is to produce the same image

some structure here makes 
this task of “reconstructing” 
the input image nontrivial

In this case, it’s the fact that 
each pixel must be constructed 
from preceding pixels

<START>

masked self-attention

position-wise nonlinear network structure comes from masking in 
the self-attention operator 
(otherwise this would be trivial!)

remember BERT…



A 30,000 ft view…
A general design for generative models?

model

loss

some structure here makes 
this task of “reconstructing” 
the input image nontrivial

i.e., prevents learning an 
“identity function”

Examples of structure that we’ve seen:

➢ RNN/LSTM sequence models that must predict a 
pixel’s value based only on “previous” pixels

➢ “PixelCNN” models that must predict a pixel’s value 
based on a (masked) neighborhood

➢ Pixel transformer, which must make predictions based 
on masked self-attention

This is all spatial structure, can we use 
more abstract structure instead?



The autoencoder principle
Basic idea: train a network that encodes an image into some hidden state, and then 
decodes that image as accurately as possible from that hidden state

Forcing structure: something about the design of the model, or in the data processing 
or regularization, must force the autoencoder to learn a structured representation

Such a network is called an autoencoder

encoder hidden 
state

decoder

this is the bit we use for 
downstream tasks



The types of autoencoders
Forcing structure: something about the design of the model, or in the data processing 
or regularization, must force the autoencoder to learn a structured representation

Dimensionality: make the hidden state smaller than the input/output, so that the network must compress it

Denoising: corrupt the input with noise, forcing the autoencoder to learn to distinguish noise from signal

Sparsity: force the hidden state to be sparse (most entries are zero), so that the network must compress the input

Probabilistic modeling: force the hidden state to agree with a prior distribution (this will be covered next time)



(Classic) Bottleneck autoencoder

encoder hidden 
state

decoder

100 x 100 =
10,000 dimensions

128 dimensions

This has some interesting properties:

➢ If both encoder and decoder are linear (which is usually not very interesting), 
this exactly recovers PCA

➢ Can be viewed as “non-linear dimensionality reduction” – could be useful 
simply because dimensionality is lower and we can use various algorithms 
that are only tractable in low-dimensional spaces (e.g., discretization)

Today, this design is rather antiquated and rarely used, 
but good to know about historically



Bottleneck autoencoder example

Lange & Riedmiller. Autonomous reinforcement learning from raw visual data. 2012.



Sparse autoencoder
Idea: can we describe the input with a small set of “attributes”?

This might be a more compressed and structured representation

Pixel (0,0): #FE057D

Pixel (0,1): #FD0263

Pixel (0,2): #E1065F

NOT structured

“dense”: most values non-zero

has_ears: 1

has_wings: 0

has_wheels: 0

very structured!

“sparse”: most values are zero

there are many possible “attributes,” and most 
images don’t have most of the attributes

Idea: “sparse” representations are going to be more structured!

Aside:

This idea originated in neuroscience, 
where researchers believe that the 
brain uses sparse representations 
(see “sparse coding”)



Sparse autoencoder

encoder hidden 
state

decoder

sparsity loss
dimensionality might be very large, 
even larger than the input!

called overcomplete Why?

“L1 regularization” “L2 regularization”

There are other kinds of sparsity losses/models:

• Lifetime sparsity

• Spike and slab models



Denoising autoencoder
Idea: a good model that has learned meaningful structure should “fill in the blanks”

encoder hidden 
state

decoder

There are many variants on this basic idea, and this is one of 
the most widely used simple autoencoder designs



The types of autoencoders
Forcing structure: something about the design of the model, or in the data processing 
or regularization, must force the autoencoder to learn a structured representation

Dimensionality: make the hidden state smaller than the input/output, so that the network must compress it

Denoising: corrupt the input with noise, forcing the autoencoder to learn to distinguish noise from signal

Sparsity: force the hidden state to be sparse (most entries are zero), so that the network must compress the input

Probabilistic modeling: force the hidden state to agree with a prior distribution (this will be covered next time)

We’ll discuss this design in much more detail in the next lecture!

+ very simple to implement

- simply reducing dimensionality often does not provide the structure we want

+ principled approach that can provide a “disentangled” representation

- harder in practice, requires choosing the regularizer and adjusting hyperparameters

+ very simple to implement

- not clear which layer to choose for the bottleneck, many ad-hoc choices (e.g., how much noise to add)



Layerwise pretraining
The early days of deep learning…

1

2

3

[D
O

G
]

For a while (2006-2009 or so), this was 
one of the dominant ways to train deep
networks

Then we got a lot better at training 
deep networks end-to-end (ReLU, batch 
norm, better hyperparameter tuning), 
and largely stopped doing this

Correspondingly, autoencoders became 
less important, but they are still useful!



Autoencoders today

encoder hidden 
state

decoder

➢ Much less widely used these days because there are better alternatives
▪ Representation learning: VAEs, contrastive learning
▪ Generation: GANs, VAEs, autoregressive models

➢ Still a viable option for “quick and dirty” representation learning that is very fast and 
can work OK

➢ Big problem: sampling (generation) from an autoencoder is hard, which limits its uses
▪ The variational autoencoder (VAE) addresses this, and is the most widely used 

autoencoder today – we will cover this next time!



Latent Variable Models



Latent variable models

mixture
element



Latent variable models in general

“easy” distribution
(e.g., Gaussian)

“easy” distribution
(e.g., Gaussian)

“easy” distribution
(e.g., conditional Gaussian)



How do we train latent variable models?



Estimating the log-likelihood

this is called probabilistic inference



Latent variable models in deep learning

Using the model for generation:

“generate a vector of random numbers”

“turn that vector of random numbers into an image”

Today: how do we represent and use this

Next time: how do we train this

A latent variable deep generative model is 
(usually) just a model that turns random 
numbers into valid samples (e.g., images)

There are many types of such models: VAEs, 
GANs, normalizing flows, etc.

Please don’t tell anyone I said this, it destroys 
the mystique



Representing latent variable models

this part is easy, just 
generate (e.g.) Gaussian 
random numbers

this part is a little 
more complex mean is a neural 

net function
variance is (optionally) a 
neural net function

This just reduces 
to MSE loss!



Representing latent variable models

Could just a 256-way softmax, just like in PixelRNN or PixelCNN!

(this works very well, but is a little bit slow)

Other choices (not covered in this lecture): discretized logistic, binary cross-entropy

especially common for best performing models



Representing latent variable models

what architecture should we use?

Easy choice: just a big fully connected network (linear layers + ReLU)

works well for tiny images (e.g., MNIST) or non-image data

Better choice: transpose convolutions



Training latent variable models

variational autoencoders (VAEs)

normalizing flows

generative adversarial networks (GANs)


