
Latent Variable Models
Designing, Visualizing and Understanding Deep Neural Networks

CS W182/282A

Instructor: Sergey Levine
UC Berkeley



Latent variable models in general

“easy” distribution
(e.g., Gaussian)

“easy” distribution
(e.g., Gaussian)

“easy” distribution
(e.g., conditional Gaussian)



Estimating the log-likelihood

this is called probabilistic inference



The variational approximation



The variational approximation

Jensen’s inequality



A brief aside…

Entropy:

Intuition 1: how random is the random variable?

Intuition 2: how large is the log probability in expectation under itself

high

low

this maximizes the first part

this also maximizes the second part
(makes it as wide as possible)



A brief aside…

KL-Divergence:

Intuition 1: how different are two distributions?

Intuition 2: how small is the expected log probability of one distribution under another, minus entropy?

why entropy?

this maximizes the first part

this also maximizes the second part
(makes it as wide as possible)



The variational approximation



The variational approximation



How do we use this?

how?



What’s the problem?



Amortized Variational Inference



What’s the problem?



Amortized variational inference

how do we calculate this?



Amortized variational inference

look up formula for 
entropy of a Gaussian

can just use policy gradient!

What’s wrong with this gradient?



The reparameterization trick

Is there a better way?

most autodiff software (e.g., TensorFlow) 
will compute this for you!



Another way to look at it…

this often has a convenient analytical 
form (e.g., KL-divergence for Gaussians)



Reparameterization trick vs. policy gradient

• Policy gradient
• Can handle both discrete and 

continuous latent variables

• High variance, requires multiple 
samples & small learning rates

• Reparameterization trick
• Only continuous latent variables

• Very simple to implement

• Low variance



Variational Autoencoders



The variational autoencoder



Using the variational autoencoder



Conditional models



VAEs with convolutions

64x64x3

5x5x32
conv

stride 2

3x3x64
conv

stride 2

3x3x128
conv

stride 2

30x30x32

14x14x64

6x6x128

1024

256

256

256

256 1024

Question: can we design a fully convolutional VAE?

transpose convolutions

Yes, but be careful with the latent codes!

(independent) mean and 
variance for each pixel



VAEs in practice
Common issue: very tempting for VAEs (especially conditional VAEs) to ignore the latent codes, or generate poor samples

why?

Problem 1: latent code is ignored

what does this look like? blurry “average” image

Problem 2: latent code is not compressed

what does this look like?

when reconstructing

garbage images

when sampling

too low too high

need to control this quantity 
carefully to get good results!



VAEs in practice

Problem 1: latent code is ignored Problem 2: latent code is not compressed

too low too high

need to control this quantity 
carefully to get good results!

multiplier to adjust regularizer strength



Invertible Models and Normalizing Flows



A simpler kind of model

deterministic function

Why is this such a big deal?

Basic idea: learn invertible mapping from z to x
that makes determinant easy to compute

No more need for lower bounds! Can get exact 
probabilities/likelihoods!



Normalizing flow models

choose a special architecture that 
makes these easy to compute

A normalizing flow model consists of multiple layers of 
invertible transformations

We need to figure out how to make an invertible layer, and 
then compose many of them to make a deep network



Normalizing flow models

If each layer is invertible, the whole thing is invertible

Oftentimes, invertible layers also have very convenient 
determinants

Goal: design an invertible layer, and then compose many 
of them to create a fully invertible neural net

Log-determinant of whole model is just the sum of 
log-determinants of the layers



NICE: Nonlinear Independent Components Estimation

Dinh et al. NICE: Non-linear Independent Components Estimation. 2014.

special 
transformation

but this is not invertible

Idea: what if we force part of the layer to keep all the information
so that we can then recover anything that was changed by 
the nonlinear transformation?

Important: here I describe the case for one
layer, but in reality we’ll have many layers!

neural 
net



NICE: Nonlinear Independent Components Estimation

Dinh et al. NICE: Non-linear Independent Components Estimation. 2014.

neural 
net

neural 
net



What about the Jacobian?

Dinh et al. NICE: Non-linear Independent Components Estimation. 2014.

neural 
net

This is very simple and convenient

But it’s representationally a bit limiting



NICE: Nonlinear Independent Components Estimation

Dinh et al. NICE: Non-linear Independent Components Estimation. 2014.

Material based on Grover & Ermon CS236



NICE: Nonlinear Independent Components Estimation

Dinh et al. NICE: Non-linear Independent Components Estimation. 2014.

Material based on Grover & Ermon CS236



Real-NVP: Non-Volume Preserving Transformation

Dinh et al. Density estimation using Real-NVP. 2016.

neural net

neural net

elementwise product

Inverse can be derived in the same way as before:

This is significantly more expressive



Real-NVP Samples

Material based on Grover & Ermon CS236

Dinh et al. Density estimation using Real-NVP. 2016.



Concluding Remarks

+ can get exact probabilities/likelihoods

+ no need for lower bounds

+ conceptually simpler (perhaps)

- requires special architecture

- Z must have same dimensionality as X


