
Generative Adversarial Networks
Designing, Visualizing and Understanding Deep Neural Networks

CS W182/282A

Instructor: Sergey Levine
UC Berkeley



Back to latent variable models

Using the model for generation:

“generate a vector of random numbers”

“turn that vector of random numbers into an image”

Idea: instead of training an encoder, can we just 
train the whole model to generate images that look 
similar to real images at the population level?



Matching distributions
at the population level

no two faces are the same, but they look similar at the population level

which set of faces is real?

it’s a trick question…



The only winning move is to generate
Idea: train a network to guess which images are real and which are fake!

[True/False]

“is this a real image”

False True

This model can then serve as a 
loss function for the generator!



The only winning move is to generate

[True/False]

“discriminator”

“generator”

(how?)

this almost works, but has two major problems



The only winning move is to generate

[True/False]

“discriminator”

“generator”

random initialization!

this is called a generative adversarial network (GAN)

(in reality there are a variety of different losses, but similar idea…)



Why do GANs learn distributions?

[True/False]

“discriminator”

“generator”

random initialization!

(in reality there are a variety of different losses, but similar idea…)

“can’t tell if real or fake”

How to do this?

➢ Generate images that look realistic (obviously)

➢ Generate all possible realistic images why?



Why do GANs learn distributions?
➢ Generate all possible realistic images why? very realistic, but only dogs

True = 1.0!

True = 0.25!

The generator will do better if it not only 
generates realistic pictures, but if it 
generates all realistic pictures



Small GANs real pictures

Goodfellow et al. Generative adversarial networks. 2014



High-res GANs

Karras et al. Progressive Growing of GANs. 2017



Big GANs

Brock et al. Large-Scale GAN Training…. 2018



Turning bread into cat…

Isola et al. Image-to-Image Translation with Conditional Adversarial Nets. 2017



Generative Adversarial Networks



The GAN game

[True/False]

“discriminator”

“generator”

random initialization!

random numbers



The GAN game

Two important details:

How to make this work with stochastic gradient descent/ascent?

How to compute the gradients?

(both are actually pretty simple)

this is just cross-entropy 
loss!

random numbers



The GAN game

Just backpropagate from the discriminator into the generator!



What does the GAN optimize?

optimal 
discriminator



What does the GAN optimize?

what funny expressions…

This has some interesting properties:

Jensen-Shannon divergence

symmetric (unlike KL-divergence)

goes to zero if the distributions match This means the GAN really is trying 
to match the data distribution!



A small practical aside

“minimize probability that image is fake”

“maximize probability that image is real”

(though there are other variants too!)

small gradient when generator is bad
(i.e., probability of fake is high)

small gradient when generator is good 
(i.e., probability of real is high)



GAN architectures

256 1024

transpose convolutions

64 512

some made-up architectures

512 512 512

[True/False]

[True/False]

a real architecture (BigGAN)



Conditional GANs

append conditioning (e.g., class label) 
to both generator and discriminator

Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets.



CycleGAN

Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks.

Problem: we don’t know 
which images “go together”



CycleGAN

Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks.

If I turn this horse into a zebra, and 
then turn that zebra back into a 

horse, I should get the same horse!

Problem: why should 
the “translated” zebra 
look anything like the 
original horse?

good

bad



Summary
➢The GAN is a 2-player game

➢We can derive the optimal discriminator, and 
from this determine what objective is 
minimized at the Nash equilibrium
▪ Note that this does not guarantee that we’ll

actually find the Nash equilibrium!

➢ We can train either fully connected or
convolutional GANs

➢ We can turn horses into zebras



Improved GAN Training



Why is training GANs hard?

real data generated data

all of these values are basically the same



How can we make it better?



Improved GAN techniques
(in no particular order)

Least-squares GAN (LSGAN) discriminator outputs real-valued number

Wasserstein GAN (WGAN) discriminator is constrained to be Lipschitz-continuous

Gradient penalty discriminator is constrained to be continuous even harder

Spectral norm discriminator is really constrained to be continuous

Instance noise add noise to the data and generated samples

Mescheder et al. Which Training Methods for 
GANs do actually Converge? 2108.

these are pretty good choices today



Wasserstein GAN (WGAN)
High-level intuition: the JS divergence used by the classic GAN doesn’t account for “distance”

“really far apart”

“really close together”

JSD (and KL-divergence, and most 
other divergences) are almost identical 
in these two cases!

This is why GANs are so hard to train



Wasserstein GAN (WGAN)
A better metric: consider how far apart (in Euclidean space) all the “bits” of probability are

“really far apart”

“really close together”

More precisely: optimal transport (“Earth mover’s distance”) – how far do you have to go 
to “transport” one distribution into another



Wasserstein GAN (WGAN)
A better metric: consider how far apart (in Euclidean space) all the “bits” of probability are

More precisely: optimal transport (“Earth mover’s distance”) – how far do you have to go 
to “transport” one distribution into another

(don’t worry too much if this is hard to understand, not actually necessary to implement WGAN)



Wasserstein GAN (WGAN)
A better metric: consider how far apart (in Euclidean space) all the “bits” of probability are

More precisely: optimal transport (“Earth mover’s distance”) – how far do you have to go 
to “transport” one distribution into another

(won’t prove here, but uses tools from duality, 
similar to what you might learn when you study 
Lagrangian duality in a class on convex optimization)

equivalent to saying function has bounded slope

i.e., it should not be too steep
How?



Wasserstein GAN (WGAN)
A better metric: consider how far apart (in Euclidean space) all the “bits” of probability are

More precisely: optimal transport (“Earth mover’s distance”) – how far do you have to go 
to “transport” one distribution into another



Wasserstein GAN (WGAN)
A better metric: consider how far apart (in Euclidean space) all the “bits” of probability are

More precisely: optimal transport (“Earth mover’s distance”) – how far do you have to go 
to “transport” one distribution into another

Arjovsky et al. Wasserstein GAN. 2017.



Wasserstein GAN (WGAN)

real number

“discriminator”
“generator” discriminator outputs real numbers (not true/false probability)

discriminator uses weight clipping
Arjovsky et al. Wasserstein GAN. 2017.



Better discriminator regularization

make norm of gradient close to 1

for details, see: Gulrajani et al. Improved Training of Wasserstein GANs. 2017.



Spectral norm

for details, see: Miyato et al. Spectral Normalization for Generative Adversarial Networks. 2018.

Lipschitz constant

neural net layers (e.g., linear, conv, ReLU, etc.)

to get intuition for why this is true, imagine these are linear functions

that’s easy, how about linear layers?

See paper for how to 
implement this efficiently



GAN training summary
➢GAN training is really hard, because the 

discriminator can provide poor gradients

➢Various “tricks” can make this much more 
practical
▪ “Smooth” real-valued discriminators: LSGAN, 

WGAN, WGAN-GP, spectral norm
▪ Instance noise

➢ The theory behind these tricks is quite 
complex, but the methods in practice are 
very simple

➢ Such GANs are much easier to train


