Generative Adversarial Networks

Designing, Visualizing and Understanding Deep Neural Networks

CSW182/282A

Instructor: Sergey Levine
UC Berkeley

Back to latent variable models

Idea: instead of training an encoder, can we just
train the whole model to generate images that look
similar to real images at the population level?

p(2)
N(0,1)
Using the model for generation:

1. sample z ~ p(z) “generate a vector of random numbers”

2. sample = ~ p(x|z) “turn that vector of random numbers into an image”

Matching distributions
at the populatlon level

no two faces are the same, but they look similar at the population level

which set of faces is real?

it’s a trick question...

The only winnin;

o move IS 1o ;

Idea: train a network to guess which images are r

“is this a real image”

This model can then serve as a
loss function for the generator!

generate

eal and which are fake!

The only winning move is to generate

1. get a “True” dataset Dy = {(z;)}

2. get a generator Gy(z) > (how?)

3. sample a “False” dataset Dp: z ~ p(2), x = G(2)

— [True/False]

4. train a discriminator Dy(x) = py(y|z) using Dr and Dp
<. use —log D(x) as “loss” to train G(z) >

if only done once, too easy for G(z) to “fool” D(z) I — . - m
p(z) G(z)

this almost works, but has two major problems

“discriminator”

“generator”

The only winning move is to generate

ANl

. get a “True” dataset Dp = {(x;)}
get a generator Gy(z2) random initialization! — [True/False]
sample a “False” dataset Dp: z ~ p(2), r = G(2)
update Dy(z) = py(y|z) using Dr and Dr (1 SGD step)
y ”, “discriminator”
use —log D(z) as “loss” to update G(z) (1 SGD step)

(in reality there are a variety of different losses, but similar idea...)
—_— —_— Fﬁy
this is called a generative adversarial network (GAN) h
p(z) G(z)

“generator”

Why do GANSs learn distributions?

. get a “True” dataset Dp = {(x;)}

get a generator Gy(z2) random initialization!

sample a “False” dataset Dp: z ~ p(2), r = G(2)

update Dy(z) = py(y|z) using Dr and Dr (1 SGD step)
y ” “discriminator”

use —log D(z) as “loss” to update G(z) (1 SGD step)

(in reality there are a variety of different losses, but similar idea...)
what does G(z) want to do? I - ‘a
p(z) G(z)

— [True/False]

ANl

make D(z) = 0.5 for all generated “can’t tell if real or fake”

How to do this?

“generator”
» Generate images that look realistic (obviously)

» Generate all possible realistic images why?

Why do GANSs learn distributions?

» Generate all possible realistic images why? very realistic, but only dogs

— True = 1.0!

The generator will do better if it not only
generates realistic pictures, but if it

generates all realistic pictures — True = 0.25!

Small GANs _—

J

BN

AN DI~
VO e [/
»a

919]
arl
) ;)
HH

Goodfellow et al. Generative adversarial networks. 2014

igh-res GANSs

" ! : ‘ '{A‘ = : ,, . =
Mao et al. (2016b) (128 x 128) Gulrajani et al. (2017) (128 x 128) Our (256 x 256)

Figure 5: 1024 x 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations.

Karras et al. Progressive Growing of GANs. 2017

Big GANS

(a) 128128 (b) 256256

Figure 4: Samples from our BigGAN model with truncation threshold (.5 (a-c) and an example of
class leakage in a partially trained model (d).

Brock et al. Large-Scale GAN Training.... 2018

Turning bread into cat...

Labels to Street Scene Labels to Facade BW to Color

b
7 e

input output

Aerial to Map

output input output
Day to Night Edges to Photo

input

input output input output input output
Example results on several image-to-image translation problems. In each case we use the same architecture and objective, simply training on different data.
INPUT OUTPUT
edges2cats
TOOL INPUT OUTPUT
— /_\
m i pix2pix
. gk &=
-\

Trained on about 2k stock cat photos and edges automatically generated from those photos.

Generates cat-colored objects, some with nightmare faces. The best one I've seen yet was a cat-

beholder

Isola et al. Image-to-Image Translation with Conditional Adversarial Nets. 2017

Generative Adversarial Networks

The GAN game

. get a “True” dataset Dp = {(x;)}

get a generator Gy(z2) random initialization!

sample a “False” dataset Dp: z ~ p(2), x = G(2)

— . — [True/False]
update Dy(z) = py(y|z) using Dr and Dr (1 SGD step)

use D(x) to update G(z) (1 SGD step) discriminator

ANl

“classic” GAN 2-player game:

mén max V(D,G) = Eypyoia(x)log D(z)] + E,p2)llog(1 — D(G(2)))]

! ! p(z) G(z)
N N o 7
1 1 generator
~ D logD(x;) x;€Dr ~) log(l— D(x)))
i=1 j=1
z; = G(z))

\ random numbers

The GAN game

minmax V(0,¢) = Eyp,...(x) 108 Dy (2)] + E.pz)log(1l — Dy (Go(2)))]

o ¢
1 X 1 Y /\
6 &+ aVaV(0.0) ~ Ve | D logDo(an) + 5 D log(L = Dy(ay)) | thisisjust cross-entropy
1=1 =1)
0« 60— anV(Qa Qb) x; € Dp ! Tj = G(Zj)

1 N
~ V, ﬁZbg(l—qu(GO(Zj)))

I

random numbers
Two important details:

How to make this work with stochastic gradient descent/ascent?
How to compute the gradients?

(both are actually pretty simple)

The GAN game

minmax V (0, ¢) = Eprdata(x)[IOg Dy (x)] + Ezwp(z)[log(l — Dy(Gg(2)))]

0 @
N
O — O+ OzV¢V(9, Cb) Vo (1 z log(1 — D¢(GQ(ZJ‘))))
0« 0—aVyV(0,o) N =1

t l L =1log(1 — Dy(Gy(25)))
dx dL dL

2)dh de dzx Doz

Z

Just backpropagate from the discriminator into the generator!

What does the GAN optimize?

m&n max V(D,G) = Eypyoia(x)log D(z)] + E,p2)llog(1 — D(G(2)))]

what can we say about G(z) at convergence?
idea: express D(x) in closed form as function of G(z)

* . pdata(l')
De() = o @ + pa@)

T

r=G(z) z~p(z)

now what is the objective for G?

V(D},G) = «—— entirely a function of G

Bop gea (@) 1og paata(z) — log(pdata(z) + pa(x))]+
E, . (z)log pa(x) — log(paata(z) + pa(T))]

What does the GAN optimize?

V(D& G) =

Epdata(ﬁl) [1Og pdata(ﬂj) — log(pdata(gc) + pa (gj))]_|_

Epg(a:) [10ng(33) — log(pdata(x) + pg(fﬂ))]

what funny expressions...

let g(z) = Pdata(T)+pa () accounts for the < factors
— ! l
V(Dg, G) = Ep paa(2)[108 Pdata (€) — log q(2)]4 Ly, (1) [log pa () — log g(x)] — log 4

\]\ J
| |

Dx1,(pdatallq(x)) D1 (pclla(x))

= Djs (pdataHpG) Jensen-Shannon divergence

This has some interesting properties:
This means the GAN really is trying

goes to zero if the distributions match S
to match the data distribution!

symmetric (unlike KL-divergence)

A small practical aside

mgin m(?X V(0,0) = Ezepyoa(@)10g Dy ()] + E.pz)[log(l — Dy(Go(2)))]

generator loss should be E,.,,)[log(1 — Dy(Go(2)))] “minimize probability that image is fake”

in practice, we often use F,.,)[—log Dy(Ge(2))] “maximize probability that image is real”

(though there are other variants too!)

small gradient when generator is good

/ (i.e., probability of real is high)

small gradient when generator is bad
(i.e., probability of fake is high)

HE —log(x)

GAN architectures =™

some made-up architectures

z
i*l —>I—> ﬂ—»l —>I —> [True/False]

(a) (b) (c)
64 512 512 512 512

Figure 15: (a) A typical architectural layout for BigGAN’s G; details are in the following tables.
(b) A Residual Block (ResBlock up) in BigGAN’s G. (c) A Residual Block (ResBlock down) in
BigGAN’s D.

Z
i_,l —> [True/False]
256 1024

transpose convolutions

Conditional GANs

5 i
...........

\ append conditioning (e.g., class label)

/ to both generator and discriminator

Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets.

O
7
po |
3
¥
$
4
7
4
7

LR NENEESD I SR S

S SN B SRS t BT P B N oY

~ 2

SNd e oW

DPRYLOoPDEeY OO

l“ ‘,ﬁl ‘n ‘-: -~ 0

«)
-

QL =\

CycleGAN

Monet Z_ Photos _ i ' Summer Z_ Winter

Problem: we don’t know
which images “go together”

horse —» zebra

Photograph

Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks.

CycleGAN

Problem: why should
the “translated” zebra

two (conditional) generators: two discriminators:
) . o o look anything like the
G: turn X into Y (e.g., horse into zebra) Dx: is it a realistic horse? original horser
F: turn Y into X (e.g., zebra into horse) Dy: is it a realistic zebra?
e Z* g
D D S ; 7 T
X AY T Y N | & Y [X Yy
? G F F
X C Y X Y X —~e Y .c.)'cle—c?nsistenc_v
F cy'cl&c?(:iistency'__ \ . /.\s‘
(a)

Leye(GL F) = Eprppu () |1 F(G(2)) — z|1]
If | turn this horse into a zebra, and + Eympaa) I|G(F(y)) = yl1]-

then turn that zebra back into a
horse, | should get the same horse! \/

Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks.

summary

» The GAN is a 2-player game minmaxV(D,G) = Eynpy,,,(x) 108 D(2)] + Eonp(z)log(l — D(G(2)))]

» We can derive the optimal discriminator, and
from this determine what objective is

minimized at the Nash equilibrium
= Note that this does not guarantee that we’ll V (D%, G) = Djs(paatallpc)
actually find the Nash equilibrium!

* L pdata($)
b (x) B pdata(x) _|_pG($)

» We can train either fully connected or
convolutional GANs

> We can turn horses into zebras

Figure 15: (a) A typical architectural layout for BigGAN’s G; details are in the following tables.
(b) A Residual Block (ResBlock up) in BigGAN’s G. (c) A Residual Block (ResBlock down) in
BigGAN’s D.

Improved GAN Training

Why is training GANs hard?

p(z)
Pdata () D(x) pc(z)
—9 900 & ke de
/ \
real data generated data

what is the generator gradient here?

mgin qublx V(0,0) = Eprpyona(x) 108 D ()] + E.op(zy[log(l — Dy (Go(2)))]

all of these values are basically the same

How can we make it better?

better D(x)

better pgata

pdata(fc

better pg(x)

= pG(aj)

(in no particular order)

Least-squares GAN (LSGAN)

Wasserstein GAN (WGAN)

Gradient penalty

° 1772 ! P LiIIT
.:/;/ : ; 1 :;:__g e Ly . :
mprove techniqgues O @
TN~ {
e _..__..--'//1 e - t |
(a) Standard GAN (b) Non-saturating GAN
T R EREE
j’,’,:d‘.‘\‘nw;-;ﬁa".“;“
LA :: ':";,.t‘ll
T ESEEL
ixﬁ“_::f-ﬁ ____‘:::._Zi_ﬁf":_
discriminator outputs real-valued number OWOAN (=5 () WOANGP (s — 5)
[o ST]
k“ | 4/{; 4 Suudesres
G i ey !
discriminator is constrained to be Lipschitz-continuous g M IS
| & B B N R SSA74
(e) Consensus optimization (f) Instance noise
. _ _ _ Voo T 5T
discriminator is constrained to be continuous even harder %% L= 777 280
I & TRV IR IR
IR R
IRERRAA~/ /AR AR Y Y4
discriminator is really constrained to be continuous (2) Gradient penalty (h) Gradient penalty (CR)

Spectral norm

Instance noise

Mescheder et al. Which Training Methods for
GANs do actually Converge? 2108.

add noise to the data and generated samples

these are pretty good choices today

Wasserstein GAN (WGAN)

High-level intuition: the JS divergence used by the classic GAN doesn’t account for “distance”

Paata(r) =~ 0 for all x where pg(z) # 0
., V(DG G) = E,... ()10 pdata(r) — 10g(pdata(r) + pa(x))]+

p(x) By () logpa () — log(paata(r) + pa(x))]

_— pa(x) = 0 for all x where pgata(z) # 0

Pdata () “really far apart” pa(x)

v

"—J'-'—'\ ’ = i Ll - i ;l,_

JSD (and KL-divergence, and most

p(z) “really close together” f)ther divergences) are almost identical
in these two cases!
This is why GANs are so hard to train
pdata(x) pc;(x) y

v

A L A

Wasserstein GAN (WGAN)

A better metric: consider how far apart (in Euclidean space) all the “bits” of probability are

More precisely: optimal transport (“Earth mover’s distance”) — how far do you have to go
to “transport” one distribution into another

A

p()
“really far apart”
Pdatald : : jYe: (;L‘)
—"_J'-'—; ’ = i _L) = i ;1‘,” >
p(z) “really close together”
pG(x)

LA L A

- J'-'—'

v

Wasserstein GAN (WGAN)

A better metric: consider how far apart (in Euclidean space) all the “bits” of probability are

More precisely: optimal transport (“Earth mover’s distance”) — how far do you have to go
to “transport” one distribution into another

Formal definition: (don’t worry too much if this is hard to understand, not actually necessary to implement WGAN)

W (Paata, Pc) = 1171f B~y @z — yl|] Y4

I

~v(xz,y) is a distribution over x,y Pdata V(@)

with marginals vx () = pdata(z) and vy (z) = pa(x) ;\\

intuition: correlations between x and y in v(x,y) indicate K
PG

which x should be “transported” to which y

Wasserstein GAN (WGAN)

A better metric: consider how far apart (in Euclidean space) all the “bits” of probability are

More precisely: optimal transport (“Earth mover’s distance”) — how far do you have to go
to “transport” one distribution into another

could learn v directly Pdata(2) is unknown

W (paata; PG) = 11,'1Yf Bz)y 11— yl] but this is very hard ~v(z,y) is really complex

: . . . won’t prove here, but uses tools from duality,
cool theorem based on Kantorovich-Rubinstein duality: (. nep) 4
similar to what you might learn when you study

Lagrangian duality in a class on convex optimization)

W(pdata:) = S Epgp [F(2)] = Epg () [£ ()]
1£112<1

/‘ k expressed as difference of expectations
under pg(x) and pgata(T)
just like a regular GAN!

set of all 1-Lipschitz scalar functions

(@) = f(y)] < |z -y
equivalent to saying function has bounded slope

o How?
i.e., it should not be too steep

Wasserstein GAN (WGAN)

A better metric: consider how far apart (in Euclidean space) all the “bits” of probability are

More precisely: optimal transport (“Earth mover’s distance”) — how far do you have to go
to “transport” one distribution into another

W(pdataapG) — Sup E‘pdata [f(aj)] - Epg(m) [f(:)f)]

Sl <1 : : :
doesn’t guarantee 1-Lipschitz

f unless we pick bounds very carefully
set of all 1-Lipschitz scalar functions

f(z) = f(y)] < |z —y

does guarantee K-Lipschitz
for some finite K

idea: if f is a neural net with ReLU activations, can bound the weights W
1—1ayer: fg(l‘) — ReLU(Wlac -+ bl) 0 = {Wl, bl}
if W1, € [—0.01,0.01], slope can’t be bigger than 0.01 x D

2—1ayer: fg (CU) — WQRGLU(Wl.CC -+ bl) + bg 0 = {Wl, bl, WQ, bg}
if Wy, ; € [—0.01,0.01], slope is bounded (but greater than 0.01!)

Wasserstein GAN (WGAN

A better metric: consider how far apart (in Euclidean space) all the “bits” of probability are

More precisely: optimal transport (“Earth mover’s distance”) — how far do you have to go
to “transport” one distribution into another

W(pdata: pc) = sup Epy, . [f(@)] = Epg) f ()]
[fllz<1

Weight clipping is a clearly terrible way to enforce a Lipschitz constraint. If the
clipping parameter is large, then it can take a long time for any weights to reach
their limit, thereby making it harder to train the eritic till optimality. If the clipping
is small, this can easily lead to vanishing gradients when the number of layers is
big, or batch normalization is not used (such as in RNNs). We experimented with
simple variants (such as projecting the weights to a sphere) with little difference, and
we stuck with weight clipping due to its simplicity and already good performance.
However, we do leave the topic of enforcing Lipschitz constraints in a neural network
setting for further investigation, and we actively encourage interested researchers
to improve on this method.

Arjovsky et al. Wasserstein GAN. 2017.

Wasserstein GAN (WGAN)

W (pdata; Pg) = sup Epaia Lf(x)] — Epe () Lf(z)] = | e

||f||LS1 0.8 Density of fake
GAN Discrimina tor
WGAN Critic

0.6

1. update fp using gradient of E,~p,...[fo(2)] = E.upz) [fo(G(2))] s

2. clip all weight matrices in 6 to [—c, ¢| 02
4 PR :.\:»-_ A A
3. update generator to mazimize E,.p,,)[fo(G(2))] i [P icsvsicsssng /
NiNg 1”‘ ''''
- Ei‘*a — real number
p(z) G(Z) “discriminator”
“generator” discriminator outputs real numbers (not true/false probability)

e.g., fg (CC) = WQRGLU(WﬂC + bl) + bg

discriminator uses weight clipping
Arjovsky et al. Wasserstein GAN. 2017.

Better discriminator regularization

Weight clipping is a clearly terrible way to enforce a Lipschitz constraint.

1-Lipschitz:
Gradient penalty: Want bounded slope? We’ll give you bounded slope! f(z) — f(y)] < |z — v

update fyp using gradient of
Eorpaaafo(@) = A([|Va fo(@)]]2 — 1)'2] — Eoop(x)[f0(G(2))]

make norm of gradient close to 1

for details, see: Gulrajani et al. Improved Training of Wasserstein GANs. 2017.

Spectral norm

Idea: bound the Lipschitz constant in terms of singular values of each W,

— N

neural net layers (e.g., linear, conv, RelU, etc.)
f(x) = fzo fao fi(x)

1f(@)l|Lip = [Ifs 0 fa o filluip < [|fsllLip - [[f2llLip - [[f1]lLip

Lipschitz constant to get intuition for why this is true, imagine these are linear functions

ReLU(z) = max(0,) = max slope is 1! that’s easy, how about linear layers?

max slope of Wz + b is spectral norm:

W) N\

o(W) = max — Wh largest singular value of W
W)= 500 TmrT = s, WVl ° °
- See paper for how to
Method: after each grad step, force W, «+ (Mﬁ) implement this efficiently

for details, see: Miyato et al. Spectral Normalization for Generative Adversarial Networks. 2018.

GAN training summary

» GAN training is really hard, because the
discriminator can provide poor gradients

> Various “tricks” can make this much more

practical
= “Smooth” real-valued discriminators: LSGAN,
WGAN, WGAN-GP, spectral norm
" |nstance noise

» The theory behind these tricks is quite
complex, but the methods in practice are
very simple

» Such GANs are much easier to train

