Introduction to Machine Learning

Designing, Visualizing and Understanding Deep Neural Networks

CSW182/282A

Instructor: Sergey Levine
UC Berkeley

How do we formulate learning problems?

Different types of learning problems

10f :
*: e
t'.~ . '.. .
. . 2
.
. . . .
et
o.. . [oooe
.
-20

predict y from z

.| - unlabeled
T A

state reward
S R,
_ R,
R

'_| Agent |

g Gy

. | Environment

}‘7

$ [object label]

supervised learning

unsupervised learning

reinforcement learning

Supervised learning

Given: D= {(z1,51),(x2,92), -, (Tn: Yn)} learn fo(x) ~ y

$ fo(z) =y $ [object label]

10f :
*, 7wt
! :
L) e
of W A
.
- . . . -
. LV T
.
. . oo

20 -10

predict y from x

Questions to answer:
fg(ilﬁ) = 91331 + 925132 + 93

how do we represent fy(x)? fo(@) = 12 + Oz + O30
|| fo(x;) — ys||* probability?
0(fo(x:i) # vi)

gradient descent

how do we measure difference between fy(x;) and ;7

how do we find the best setting of 67

random search least squares

Unsupervised learning

.| - .unlabeled

what does that mean?

GANSsS
VAES
pixel RNN, etc.

generative modeling:

NSP Mask LM Mask LM \ /@ /@ @AD
i i 3

00 G- @] A
sorswpervsss o=]
representation learning: | =m s & - EIEe) -

Masked Sentence A Masked Sentence B Question Paragraph
* *
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

Reinforcement learning

j Agent | choose fg(s;) = ay
e’ .. H
state| |reward action 0O maximize Zt:l (¢, at)
s, | | A
' Rt+l (
—— :
<> Environment : : -
| { actually subsumes (generalizes) supervised learning!

supervised learning: get fy(x;) to match y;

reinforcement learning: get fy(s¢) to maximize reward (could be anything)

r' 4

Actions: muscle contractions Actions: motor current or torque Actions: what to purchase
Observations: sight, smell Observations: camera images Observations: inventory levels
Rewards: food Rewards: task success measure (e.g., Rewards: profit

running speed)

Reinforcement learning

But many other application areas too!
» Education (recommend which topic to study next)
» YouTube recommendations!

» Ad placement

Haarnoja et al., 2019 > Healthcare (recommending treatments)

Let’s start with supervised learning...

Supervised learning

Given: D = {(x17y1)7(m27y2)7"'7(xn7yn)} learn f@(lf) ~Y

$ folz) =y $ [object label]

predict y from x

The overwhelming majority of machine learning that is used in industry is supervised learning

» Encompasses all prediction/recognition models trained from ground truth data
> Multi-billion $/year industry!

» Simple basic principles

Example supervised learning problems

Given: D ={(z1,y1), (x2,y2), .., (Tps Yn) } learn fy(z) =~y
Predict... Based on...
category of object image
sentence in French sentence in English
presence of disease X-ray image
text of a phrase audio utterance

Y X

Prediction is difficult

5
.
>
&
)

5?

9?

3?

4?

0?

0
0%

4%

5%

5%

70%

1
0%

0%

0%

0%

0%

2
0%

0%

0%

0%

20%

3
0%

0%

40%

0%

0%

4
0%

11%

0%

50%

0%

90%

0%

30%

0%

0%

8%

4%

20%

3%

0%

0%

0%

0%

0%

0%

2%

6%

5%

2%

10%

0%

75%

0%

40%

0%

Predicting probabilities

Often makes more sense than predicting discrete labels

We’ll see later why it is also easier to learn, due to smoothness
Intuitively, we can’t change a discrete label “a tiny bit,” it’s all or nothing

But we can change a probability “a tiny bit”

Given: D = {(xlvyl)a(93273/2)7“'7(377%7%2)} learn W pa(y|$)

po(yl|)

Conditional probabilities

L random variable representing the input

why is it a random variable?

Y random variable representing the output

p(x,y) = p(x)p(y|lxr) chainrule

definition of
p(ylr) = Pz, y) csnlgiltilg:acl)
p(ﬂf) probability

How do we represent it?

10 possible

0
0%

1
0%

ad

2
0%

computer
program

3 4
0%

0%

5

90%

abels, output 10 numbers

(that are positive and sum to 1.0)

8%

0%

2%

o e

[object probability]

0%

How do we represent it?

computer .
program Eebjee! labeli

[object probability]

if below=lige(x) then: Q
else: ¢
how about:
_ T
p(y = d0g|$) = 2" faog (that are positive and sum to 1.0)
p(y = cat|z) = 21 0.

9_) — {edoga Qcat}

How do we represent it?

computer .
orogram $ e eCes e —
[object probability]

how about:

fdog(x) — ngdog p(y|.cc) — SOftmaX(fdog(m)a fcat (35'))
feat(T) = 21 Ocat T

= could be any (ideally one to one & onto)

0 = {Qdogv Qcat} function that takes these inputs and outputs

probabilities that are positive and sumto 1

How do we represent it?

how about:

fdog(x) — ngdog p(y\x) — SOftmaX(fdog(m)a fcat(fﬂ))
fcat(aj) — ajTgcat T

- could be any (ideally one to one & onto)

0 = {Qdoga Qcat} function that takes these inputs and outputs

probabilities that are positive and sum to 1

how to make a number z positive?

especially convenient because it’s one to one & onto

2)
< ‘Z‘ maX(O’ Z) exp(z) maps entire real number line to entire set of positive reals

(but don’t overthink it, any one of these would work)

how to make a bunch of numbers sum to 17

<1 <1
n

How do we represent it?

how about:
fdog(x) — -Tngog p(y‘x) — SOftmaX(fdog(-r)a fcat(m))
fcat(aj) — ajTgcat
gz {Qdoga Qcat}

makes it positive

eXp(fdog(-T)) makes it sum to 1

P Jaog(@)) + exp(fom(@)

SOftmaXdog (fdog (.’E), fcat (:1:‘)) —

There is nothing magical about this
It’s not the only way to do it

Just need to get the numbers to be positive and sum to 1!

The softmax in general

—

S

N possible

p(y|x) — vector with N elements

fo(x) — vector-valued function with N outputs

p(y = i|x) = softmax(fy(x))|i] =

0
0%

abels

0%

0%

0%

0%

90%

8%

0%

exp(f,i(x))

S exp(fo,; (@)

2%

0%

An illustration: 2D case

> o QQ// g o
[- // p /’ ° [
° \Qa/ g
AN > ° °
< v o

As 6’533 gets bigger, p(y|r) gets bigger

An illustration: 1D case

P(red|x)
“ =
S |
almost 1.0
almost 0.0 i
l J \ | J \ I T
Y Y '
definitely blue not sure definitely red
€0 e e e et
P(red|x) =

I -« :
8 ed ¥ + € blue normalizer

Why is it called a softmax?

(red|:1: £50r0a®

6595’;(156 + eSquex

T
6100t9red$

e1000T jz | 10067, =

—— looks like max,, 95 T

Loss functions

So far...

j> - j> [object probability]

fdog(ﬂj) — xTedog p(y|33) — SOftmaX(fdog(m)a fcat (55))
cat — Tgca ex (X
Ji (z) =@ ‘ p(y = i|x) = softmax(fo())[i] = — p(fo.i(x))
0 = {0dog, Ocat } 2_j—1 exp(fo,; (7))
\ J
|

How do we select 07

this has learned parameters

The machine learning method

for solving any problem ever

How do represent the “program”

1. Define your model class

We (mostly) did this in the last section

(though we’ll spend a lot more time on this later)

2. DEfine your IOSS fu nCtiOn How to measure if one model in your model

class is better than another?

How to search the model class to find the model
that minimizes the loss function?

3. Pick your optimizer

4. Run it on a big GPU

Aside: Marr’s levels of analysis

computational “why?” e.g., loss function
algorithmic “what?” e.g., the model
implementation “how?” e.g., the optimization algorithm

“on which GPU?”

There are many variants on this basic idea...

The machine learning method

for solving any problem ever

How do represent the “program”

1. Define your model class

We (mostly) did this in the last section

(though we’ll spend a lot more time on this later)

2. Define your loss function

How to measure if one model in your model
class is better than another?

How to search the model class to find the model
that minimizes the loss function?

3. Pick your optimizer

4. Run it on a big GPU

How is the dataset “generated”?

E“ ‘.I’l! .
. ¢
4)

CCdOg77 ~ p(y‘.’li')

result: (x,y) ~ p(x,y)

probability distribution
over photos

conditional probability
distribution over labels

How is the dataset “generated”?

('Ta y) ™~ p(SL‘, y)

Training set: D = {(:l?1, y1), (332, yz), ooy (33n: yn)}'
what is p(D)‘? /every (x,vy;) independent of each (z;,y,)

when is this true? when is this false?

key assumption: independent and identically distributed (i.i.d.) exactly the same for all i

N (zi,yi) ~ p(,9)
when i.i.d.: p(D) = 1], p(z:, y:)

How is the dataset “generated”?
when i.i.d.: p(D) =[], p(zi, v:) = [, p(xi)p(yi|z:)

we are learning pg(ylz) it’s a “model” of the true p(y|x)

a good model should make the data look probable

idea: choose 0 such that
p(D) = | | p(xi)po(yilz:)

1s maximized

what’s the problem?

How is the dataset “generated”?
p(D) = | | p(xi)po(yilz:)

N

multiplying together many numbers < 1

1ng Zlogp xz) + log pg yz|$z Zlogpé’ yz‘xz) \OQ§

0* < arg max Z log po (y;|;) maximum likelihood estimation (MLE)

, negative log-likelihood (NLL)
0* «+— aremin — lo |,
& 0 ZZ: gpe(yz! %) this is our loss function!

Loss functions

In general:

the loss function quantifies how bad 6 is

we want the least bad (best) 0

Examples:
negative log-likelihood: —). logpe(yi|z;)

zero-one loss: Y. 0(fo(x;) # i)

mean squared error: » . %er(il?@) — il |2

also called cross-entropy why?

actually just negative log-likelihood!

why?

Optimization

The machine learning method

for solving any problem ever

fdog(m) — xTQdog

fc:at (37) — QCTQcat

1. Define your model class po(ylx) = softmax(faog(x), feat ()

2. Define your loss function negative log-likelihood: — 3=, log pe(yi|x:)

3. Pick your optimizer

4. Run it on a big GPU

The loss “landscape”

0™ < arg mgn — Z log po(yi|xi) let’s say 6 is 2D
i

\ J
I

£(6)

An algorithm:

1. Find a direction v where £(0) decreases

2. 0+ 0+ av

called “learning rate” or
“step size”

Gradient descent

An algorithm:

1. Find a direction v where L£(0) decreases

2. 00+ av

Which way does £(0) decrease?

1 negative slope = go to the right
R EEOR
positive slope = go to the left gradient: 70
1
, in general: dL(0)
for each dimension, go in the direction VL (0) = ds
opposite the slope along that dimension .
dL(0
qc(0) O 57)
V1 = — Vo = — etc.
' o, dfs _ Wn

Gradient descent

An algorithm:
1. Find a direction v where L£(0) decreases

2. 00+ av

Gradient descent:

1. Compute VyoL(0)
2. 0+ 0—aVyeL(0)

WEe’'ll go into a lot more detail about gradient
descent and related methods in a later lecture!

VoLl(6) =

The machine learning method

for solving any problem ever

fdog(m) — xTQdog

fc:at (37) — ngcat

1. Define your model class Po(ylz) = softmax(faog (), feat (7))

2. Define your loss function negative log-likelihood: — 3=, log pe(yi|x:)

Gradient descent:

3. Pick your optimizer 1. Compute VgL(6)
2. 0+ 60— CL}V@[Z(Q)

4. Run it on a big GPU

Logistic regression

| 33;91;1] T,
xt 0 T
folz) = ?J2 fo(x) = z'0 X 0y, 0y, 0y, = 7" Oy,
i ggTHym] \ - CUTQym _
matrix
: : exp(fo.i(z
4, po(y = t|z) = softmax(fy(x))[i] = =m (fo.i(2))
& 2_j—1xp(fo,;(2))
. \)@, 4 Gradient descent:
/ St
® Q?/ (0/6/0
e © 1. Compute VgL(0)
0.0&’//'/ [2 9(—9—av9£(9)
.Q@}' . °

L(0) = — Zlogpa(yilxi)

Special case: binary classification

What if we have only two classes?

T
erlx

P(yl‘x) — ToT 1 0T

e’ 4 e’v2”

T
erlx

P(yl‘x) — ToT 1 0T =

€ Y1" + e V2

Let 0, = 0,, — 0,

2

This is a bit redundant
Why? P(y1]z) + P(y2|x) =1

if we know P(y1|z), we know P(yz|z)

Ty

multiply top and bottom by e %

v —1

T T T T
eeylme_gylm ‘E)'gt;rlm_gylGU
— T T a7 — T ... T T .. a7
(eeylx_l_eé’yza:)e lex eGylaz lesc €9y2:c Byla:
=1

this is called the logistic equation
also referred to as a sigmoid

Empirical risk and true risk

zero-one loss:) . 6(fo(xi) # yi) 1if wrong, O if right

_,:

Risk: probability you will get it wrong k}
-

expected value of our loss quantifies this

can be generalized to other losses

(e.g., NLL)

Risk = Emp(z)ymp(yle) [L(T, Y, 0)] y ~p(ylxr) how likely is it that fy(z) is wrong?
During training, we can’t sample x ~ p(x), we just have D

Empirical risk = % i1 L(4,9i,0) & Epop(a) ymp(ylz) [L(2, Y, 0)]

is this a good approximation?

Empirical risk minimization

Empirical risk = 2 Y% | L(z,y4,0) & Epop(a)ymp(yle) LT, Y, 0)]
Supervised learning is (usually) empirical risk minimization

Is this the same as true risk minimization? I

Overfitting: when the empirical risk is low, but the true risk is high E | /*

can happen if the dataset is too small » lL/'./""j

can happen if the model is too powerful (has too many parameters/capacity) s : N R S
Underfitting: when the empirical risk is high, and the true risk is high . ::,:.

can happen if the model is too weak (has too few parameters/capacity) .';3-"' :.

can happen if your optimizer is not configured well (e.g., wrong learning rate) d

This is very important, and we will discuss this in much more detail later!

summary

fdog(x) — xTQdog

fcat (33) — 'TTgcat

1. Define your model class Po(y|z) = softmax(faog (), feas (7))

2. Define your loss function negative log-likelihood: — =, log pa(yilz:)

Gradient descent:

3. Pick your optimizer 1. Compute VoL(6)
2. 00— CL}V@[Z(Q)

4. Run it on a big GPU

