
Introduction to Machine Learning
Designing, Visualizing and Understanding Deep Neural Networks

CS W182/282A

Instructor: Sergey Levine
UC Berkeley



How do we formulate learning problems?



Different types of learning problems

[object label] supervised learning

unlabeled
data

representation unsupervised learning

reinforcement learning



Supervised learning
Given:

[object label]

Questions to answer:



Unsupervised learning
unlabeled

data
representation what does that mean?

generative modeling:

GANs

VAEs

pixel RNN, etc.

self-supervised 

representation learning:



Reinforcement learning

Actions: muscle contractions
Observations: sight, smell
Rewards: food

Actions: motor current or torque
Observations: camera images
Rewards: task success measure (e.g., 
running speed)

Actions: what to purchase
Observations: inventory levels
Rewards: profit



Reinforcement learning

Haarnoja et al., 2019

But many other application areas too!

➢ Healthcare (recommending treatments)

➢ Education (recommend which topic to study next)

➢ YouTube recommendations!

➢ Ad placement



Let’s start with supervised learning…



Supervised learning
Given:

[object label]

The overwhelming majority of machine learning that is used in industry is supervised learning

➢ Encompasses all prediction/recognition models trained from ground truth data
➢ Multi-billion $/year industry!
➢ Simple basic principles



Example supervised learning problems
Given:

Predict… Based on…

category of object image

sentence in French sentence in English

presence of disease X-ray image

text of a phrase audio utterance



Prediction is difficult

5?

9?

3?

4?

0?

0 1 2 3 4 5 6 7 8 9

0% 0% 0% 0% 0% 90% 8% 0% 2% 0%

4% 0% 0% 0% 11% 0% 4% 0% 6% 75%

5% 0% 0% 40% 0% 30% 20% 0% 5% 0%

5% 0% 0% 0% 50% 0% 3% 0% 2% 40%

70% 0% 20% 0% 0% 0% 0% 0% 10% 0%



Predicting probabilities
Often makes more sense than predicting discrete labels

We’ll see later why it is also easier to learn, due to smoothness

Intuitively, we can’t change a discrete label “a tiny bit,” it’s all or nothing

But we can change a probability “a tiny bit”

Given:



Conditional probabilities
random variable representing the input

why is it a random variable?

random variable representing the output

chain rule

definition of 
conditional 
probability



How do we represent it?

computer 
program [object label]

[object probability]

0 1 2 3 4 5 6 7 8 9

0% 0% 0% 0% 0% 90% 8% 0% 2% 0%

10 possible labels, output 10 numbers

(that are positive and sum to 1.0)



How do we represent it?

computer 
program [object label]

[object probability]

(that are positive and sum to 1.0)



How do we represent it?

computer 
program [object label]

[object probability]

could be any (ideally one to one & onto) 
function that takes these inputs and outputs 
probabilities that are positive and sum to 1

why any function?



How do we represent it?

could be any (ideally one to one & onto) 
function that takes these inputs and outputs 
probabilities that are positive and sum to 1

especially convenient because it’s one to one & onto

maps entire real number line to entire set of positive reals

(but don’t overthink it, any one of these would work)



How do we represent it?

makes it positive

makes it sum to 1

There is nothing magical about this

It’s not the only way to do it

Just need to get the numbers to be positive and sum to 1!



The softmax in general

0 1 2 3 4 5 6 7 8 9

0% 0% 0% 0% 0% 90% 8% 0% 2% 0%



An illustration: 2D case



An illustration: 1D case

definitely blue definitely rednot sure

probability increases exponentially as 
we move away from boundary

normalizer



Why is it called a softmax?



Loss functions



So far…

computer 
program

[object probability]

this has learned parameters



The machine learning method
for solving any problem ever

1. Define your model class
How do represent the “program”

We (mostly) did this in the last section

(though we’ll spend a lot more time on this later)

2. Define your loss function How to measure if one model in your model 
class is better than another?

3. Pick your optimizer How to search the model class to find the model 
that minimizes the loss function?

4. Run it on a big GPU



Aside: Marr’s levels of analysis

computational

algorithmic

implementation

“why?”

“what?”

“how?”

e.g., loss function

e.g., the model

e.g., the optimization algorithm

There are many variants on this basic idea…

“on which GPU?”



The machine learning method
for solving any problem ever

1. Define your model class
How do represent the “program”

We (mostly) did this in the last section

(though we’ll spend a lot more time on this later)

2. Define your loss function How to measure if one model in your model 
class is better than another?

3. Pick your optimizer How to search the model class to find the model 
that minimizes the loss function?

4. Run it on a big GPU



How is the dataset “generated”?

~
probability distribution 
over photos

conditional probability 
distribution over labels



How is the dataset “generated”?

Training set:



How is the dataset “generated”?



How is the dataset “generated”?

maximum likelihood estimation (MLE)

negative log-likelihood (NLL)

this is our loss function!



Loss functions
In general:

Examples:

aside: cross-entropy



Optimization



The machine learning method
for solving any problem ever

1. Define your model class

2. Define your loss function

3. Pick your optimizer

4. Run it on a big GPU



The loss “landscape”

some small constant

called “learning rate” or 
“step size”



Gradient descent

negative slope = go to the right

positive slope = go to the left

in general:

for each dimension, go in the direction 
opposite the slope along that dimension

etc.

gradient:



Gradient descent

We’ll go into a lot more detail about gradient 
descent and related methods in a later lecture!



The machine learning method
for solving any problem ever

1. Define your model class

2. Define your loss function

3. Pick your optimizer

4. Run it on a big GPU



Logistic regression

matrix



Special case: binary classification

this is called the logistic equation

also referred to as a sigmoid



Empirical risk and true risk
1 if wrong, 0 if right

~

is this a good approximation?



Empirical risk minimization

Overfitting: when the empirical risk is low, but the true risk is high

can happen if the dataset is too small

can happen if the model is too powerful (has too many parameters/capacity)

Underfitting: when the empirical risk is high, and the true risk is high

can happen if the model is too weak (has too few parameters/capacity)

can happen if your optimizer is not configured well (e.g., wrong learning rate)

This is very important, and we will discuss this in much more detail later!



Summary

1. Define your model class

2. Define your loss function

3. Pick your optimizer

4. Run it on a big GPU


