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What is meta-learning?

* If you’ve learned 100 tasks already, can you
figure out how to learn more efficiently?

* Now having multiple tasks is a huge advantage!
* Meta-learning = learning to learn

* In practice, very closely related to multi-task
learning

* Many formulations
* Learning an optimizer
* Learning an RNN that ingests experience
* Learning a representation
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Why is meta-learning a good idea?

* Deep learning works very well, but requires large datasets

* In many cases, we only have a small amount of data available (e.g.,
some specific computer vision task), but we might have lots of
data of a similar type for other tasks (e.g., other object
classification tasks)

* How does a meta-learner help with this?
* Use plentiful prior tasks to meta-train a model that can learn a new task
quickly with only a few examples
* Collect a small amount of labeled data for the new task

* Learn a model on this new dataset that generalizes broadly



Meta-learning with supervised learning
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Meta-learning with supervised learning

training data test set
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supervised learning: f(x) — y
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* How to read in training set?
* Many options, RNNs can work
* More on this later



What is being “learned”?
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(few shot) training set

“GGeneric” learning:

0* = arg mgin L£(0,D')

— flearn (Dtr)

supervised meta-learning: (D", x) — y

“Generic” meta-learning;:
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where ¢; = fo(D:")



What is being “learned”?

“Generic” learning:
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“GGeneric” meta-learning:

* : ] ts
0 = argmin S £(6,, DY)

1=1

where ¢; = fo(D}")

meta-learned

RNN hidden .
state weights
~., |
gbi — [h’u gp]



Meta-learning methods

black-box meta-learning
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non-parametric meta-learning
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Finn et al. Model-Agnostic Meta-Learning. 2018.



Non-Parametric & Gradient-Based Meta-Learning



Basic idea

why does this work?

that is, why does the nearest
neighbor have the right class?

because we meta-train the
features so that this produces
the right answer!
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learned (soft) nearest
neighbor classifier



gz}, D) bidirectional LSTM embedding

p9 (y‘;’S |$;S7 D’fr) — Z pnearest (a:};r |:E:;S)
k:y}:{:r:y‘;:s

tr| ..ts tr tr\7’ ts tr
P x| ) xexplglx;,D;" )" f(x:”, D, o DY o iy
nea,rest( k ‘ j ) ( ( ko i ) ( j i )) g(w3 ) m f(w; ’D;F )

different nets to embed z'" and 2%

both f and g conditioned on entire set D"
e

Vinyals et al. Matching networks for few-shot learning. 2016.



Prototypical networks

Two simple ideas compared to matching networks:
1. Instead of “soft nearest neighbor,” construct prototype for each class
1

ts tr T ts t

po(ylzy", Dy') o exple, f(z7)) ¢y = 5 > 9@y
Yy ky}:cr:y
2. Get rid of all the complex junk —sichrectionattSTHvientbedding—
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Snell et al. Prototypical networks for few-shot learning. 2017.



Back to representations...
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is pretraining a type of meta-learning?
better features = faster learning of new task!



Meta-learning as an optimization problem

mn
0* = arg min Z L(¢p;, D) _
0 i1 This can be trained the same way as any

other neural network, by implementing
here ¢; = f (Dtr) , :
where @; o\ L gradient descent as a computation graph

and then running backpropagation through

dientd t!
what if fo(D}") is just a finetuning algorithm? Sracient Cesten

fo(DI") = 60 — aVeL(0, D)

(could take a few gradient steps in general)

Finn, Abbeel, Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks.



MAML In pictures
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What did we just do??

supervised learning: f(z) — y
supervised meta-learning: f(D"Y,z) — y
model-agnostic meta-learning: fy AML(D“’, T) =y

Just another computation graph...

fasn (D%, @) = for(2) Can implement with any autodiff

P =6-a S Vellfs(e)y) package (e.g., TensorFlow)
(z.y)eD" But has favorable inductive bias...



Why does it work?

black-based meta-learning

Ytest — test label
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* Does it converge?

* What does it converge to?
* Who knows...

 What to do if it’s not good enough?
* Nothing...

* Does it converge?

* What does it converge to?

* What to do if it’s not good enough?



Universality

Did we lose anything?

Universality: meta-learning can learn any “algorithm”

more precisely, can represent any function f(Dirain, )
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Finn & Levine. “Meta-Learning and Universality”



Ssummary

black-box meta-learning non-parametric meta-learning gradient-based meta-learning
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some kind of network that can read in an Vinyals et al. Matching Networks for _ o _
entire (few-shot) training set One Shot Learning. 2017. Finn et al. Model-Agnostic Meta-Learning. 2018.
- minimal inductive bias (i.e., - restricted to classification, hard to - meta-training optimization problem
everything has to be meta-learned) extend to other settings like is harder, requires more tuning
- hard to scale to “medium” shot (We regression or reinforcement Iearnlng - requires second derivatives

get long “sequences) - somewhat specialized architectures



Meta-Reinforcement Learning



The meta reinforcement learning problem

“GGeneric” learning: “Generic” meta-learning;:
0* = arg mein L(6,D™) 0" = arg mgin Zl L(¢p;, DL®)

— flearn (Dtr) where gb?, — f@ (Dfr)
Reinforcement learning;: Meta-reinforcement learning:
0" = argmax Er, ()[R(7)] 0* = arg mgxz; Er,. (r|R(7)]

= frRL(M) M={S,AP,r} where ¢; = fo(M;)
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MDP MDP for task i



The meta reinforcement learning problem

Some examples:

0* = arg max > Er, () R(7)]

1=1

where ¢; = fo(M;)

assumption: M; ~ p(M)

meta test-time:

sample Mest ~ p(M), get ¢; = fo(Miest)

{My, ..., My}
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Meta-RL with recurrent policies

main question: how to implement fy(M;)?
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Meta-RL with recurrent policies
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Why recurrent policies learn to explore
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Meta-RL with recurrent policies

n 0
0* = arg max Z Er, ()| R(7)]

|
l

\ 4
y

> —>h2—>

where ¢; = fo(M;) | | I

(s1,a1,52,71) (s2,a2,83,72) (53,0a3,54,73)
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Heess, Hunt, Lillicrap, Silver. Memory-based control with Wang, Kurth-Nelson, Tirumala, Soyer, Leibo, Munos, Duan, Schulman, Chen, Bartlett, Sutskever, Abbeel. RL2:
recurrent neural networks. 2015. Blundell, Kumaran, Botvinick. Learning to Reinforcement Fast Reinforcement Learning via Slow Reinforcement

Learning. 2016. Learning. 2016.



Architectures for meta-RL

standard RNN (LSTM) architecture

Duan, Schulman, Chen, Bartlett, Sutskever, Abbeel. RL2:
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MAML for RL
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MAML for RL videos

after 1 gradient step  after 1 gradient step
after MAML training  (forward reward) (backward reward)
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