
Bias, Variance, and Regularization
Designing, Visualizing and Understanding Deep Neural Networks

CS W182/282A

Instructor: Sergey Levine
UC Berkeley

Will we get the right answer?

Empirical risk and true risk
1 if wrong, 0 if right

~

is this a good approximation?

Empirical risk minimization

Overfitting: when the empirical risk is low, but the true risk is high

can happen if the dataset is too small

can happen if the model is too powerful (has too many parameters/capacity)

Underfitting: when the empirical risk is high, and the true risk is high

can happen if the model is too weak (has too few parameters/capacity)

can happen if your optimizer is not configured well (e.g., wrong learning rate)

Let’s analyze error!
Last time, we discussed classification

computer
program

[object label]

[object probability]

This time, we’ll focus on regression

All this stuff applies to classification too,
it’s just simpler to derive for regression

computer
program

continuous number

continuous distribution

normal (Gaussian) distribution

Let’s analyze error!

Also the same as the mean squared error (MSE) loss!

a bit easier to analyze, but we
can analyze other losses too

Overfitting: when the empirical risk is low, but the true risk is high

can happen if the dataset is too small

can happen if the model is too powerful (has too many parameters/capacity)

Underfitting: when the empirical risk is high, and the true risk is high

can happen if the model is too weak (has too few parameters/capacity)

can happen if your optimizer is not configured well (e.g., wrong learning rate)

Let’s analyze error!

Question: how does the error change for different training sets?

Let’s try to understand overfitting and underfitting more formally

Why is this question important?

underfittingoverfitting

• The training data is fitted well
• The true function is fitted poorly
• The learned function looks different each time!

• The training data is fitted poorly
• The true function is fitted poorly
• The learned function looks similar, even if

we pool together all the datasets!

Let’s analyze error!

What is the expected error, given a distribution over datasets?

~

expected value of error w.r.t. data distribution
sum over all possible datasets

Let’s analyze error!

Why do we care about this quantity?

We want to understand how well our algorithm does independently
of the particular (random) choice of dataset

This is very important if we want to improve our algorithm!

underfittingoverfitting

Bias-variance tradeoff

Bias-variance tradeoff

This error doesn’t go away no
matter how much data we have!

Regardless of what the true function is, how
much does our prediction change with dataset?

Bias-variance tradeoff

If variance is too high, we have too little data/too complex a function class/etc. => this is overfitting

If bias is too high, we have an insufficiently complex function class => this is underfitting

How do we regulate the bias-variance tradeoff?

Regularization

How to regulate bias/variance?
Get more data

addresses variance

has no effect on bias

Change your model class e.g., 12th degree polynomials to linear functions

Can we “smoothly” restrict the model class?

Can we construct a “continuous knob” for complexity?

Regularization
Regularization: something we add to the loss function to reduce variance

Bayesian interpretation: could be regarded as a prior on parameters (but this is not the only interpretation!)

High level intuition:

When we have high variance, it’s because the data doesn’t give enough information to identify parameters

If there is not enough information in the data, can we give more information through the loss function?

If we provide enough information to disambiguate between (almost) equally good models, we can pick the best one

all of these solutions have zero training error

what makes this one better?

The Bayesian perspective
Regularization: something we add to the loss function to reduce variance

Bayesian interpretation: could be regarded as a prior on parameters (but this is not the only interpretation!)

we’ve seen this part before!

remember: this is just shorthand for

what is this part?

Can we pick a prior that
makes the smoother
function more likely?

The Bayesian perspective
Regularization: something we add to the loss function to reduce variance

Bayesian interpretation: could be regarded as a prior on parameters (but this is not the only interpretation!)

we choose this bit

Example: regularized linear regression
Can we pick a prior that
makes the smoother
function more likely?

this kind of thing typically requires large coefficients if we only allow small coefficients,
best fit might be more like this

what kind of distribution assigns higher probabilities to small numbers?

Example: regularized linear regression
Can we pick a prior that
makes the smoother
function more likely?

what kind of distribution assigns higher probabilities to small numbers?

(but we don’t care, we’ll just select it directly)

“hyperparameter”

Example: regularized logistic regression
what we wanted what we got

technically every point is classified correctly

Example: regularized logistic regression

Example: regularized logistic regression

same prior, but now for a classification problem

this is sometimes called weight decay

Other examples of regularizers (we’ll discuss some of these later):

creates a preference for
zeroing out dimensions!

“L1 regularization” “L2 regularization”
Dropout: a special type of regularizer for neural networks

Gradient penalty: a special type of regularizer for GANs

…lots of other choices

Other perspectives
Regularization: something we add to the loss function to reduce variance

Bayesian perspective: the regularizer is prior knowledge about parameters

Numerical perspective: the regularizer makes underdetermined problems well-determined

Optimization perspective: the regularizer makes the loss landscape easier to search

paradoxically, regularizers can sometimes reduce underfitting if it was due to poor optimization!

especially common with GANs

In machine learning, any “heuristic” term added to the loss
that doesn’t depend on data is generally called a regularizer

Regularizers introduce hyperparameters that we have to
select in order for them to work well

“hyperparameter”

Training sets and test sets

Some questions…

How do we know if we are overfitting or underfitting?

How do we select which algorithm to use?

How do we select hyperparameters?

One idea: choose whatever makes the loss low

Can’t diagnose overfitting by
looking at the training loss!

The machine learning workflow
the dataset

training set

validation set

use this for training

reserve this for…

…selecting hyperparameters

…adding/removing features

…tweaking your model class

The machine learning workflow
the dataset

training set

validation set

used to select…

used to select…

Learning curves
lo

ss

of gradient descent steps

lo
ss

of gradient descent steps

this is the bias!

Question: can we stop here?

How do we know when to stop?

The final exam
the dataset

training set

validation set

We followed the recipe, now what?

How good is our final classifier?

That’s no good – we already used
the validation set to pick
hyperparameters!

What if we reserve another set for a final
exam (a kind of… validation validation set!)

The machine learning workflow
the dataset

training set

validation set

test set

used to select…

used to select…

Used only to report final performance

Summary and takeaways

➢Where do errors come from?
▪ Variance: too much capacity, not enough information in the data to find the right parameters
▪ Bias: too little capacity, not enough representational power to represent the true function
▪ Error = Variance + Bias^2
▪ Overfitting = too much variance
▪ Underfitting = too much bias

➢How can we trade off bias and variance?
▪ Select your model class carefully
▪ Select your features carefully
▪ Regularization: stuff we add to the loss to reduce variance

➢How do we select hyperparameters?
▪ Training/validation split
▪ Training set is for optimization (learning)
▪ Validation set is for selecting hyperparameters
▪ Test set is for reporting final results and nothing else!

