
Optimization
Designing, Visualizing and Understanding Deep Neural Networks

CS W182/282A

Instructor: Sergey Levine
UC Berkeley



How does gradient descent work?



The loss “landscape”

some small constant

called “learning rate” or 
“step size”



Gradient descent

negative slope = go to the right

positive slope = go to the left

in general:

for each dimension, go in the direction 
opposite the slope along that dimension

etc.

gradient:



Visualizing gradient descent

visualizations based on Gabriel Goh’s distill.pub article: https://distill.pub/2017/momentum/

level set contours



Demo time!

visualizations based on Gabriel Goh’s distill.pub article: https://distill.pub/2017/momentum/



What’s going on?

we don’t always move toward the optimum!

?

the steepest direction is not always best!

more on this later…



The loss surface

This is a very nice loss surface Why?

all roads lead to Rome

Is our loss actually this nice?

Logistic regression:

Negative likelihood loss for logistic regression is 
guaranteed to be convex

(this is not an obvious or trivial statement!)

Convexity: a function is convex if a line segment between 
any two points lies entirely “above” the graph

convex functions are “nice” in the sense that 
simple algorithms like gradient descent have 
strong guarantees

the doesn’t mean that gradient descent works 
well for all convex functions!



The loss surface…

…of a neural network
layer 1 layer 2 pretty hard to visualize, because neural networks 

have very large numbers of parameters

but let’s give it a try!

Oh no… the dragon of local optima

the monster of the plateau

…though some networks are better!



The geography of a loss landscape

the local optimum the plateau
the saddle point



Local optima
the most obvious issue with non-convex loss landscapes

one of the big reasons people used to worry about neural networks!

very scary in principle, since gradient descent could converge to a 
solution that is arbitrarily worse than the global optimum!

a bit surprisingly, this becomes less of
an issue as the number of parameters
increases!

for big networks, local optima exist, 
but tend to be not much worse than 
global optima

Choromanska, Henaff, Mathieu, Ben Arous, LeCun. 
The Loss Surface of Multilayer Networks.



Plateaus

Can’t just choose tiny learning rates to prevent oscillation!

Need learning rates to be large enough not to get stuck in a plateau

We’ll learn about momentum, which really helps with this



Saddle points

the gradient here is very small

it takes a long time to get out of saddle points

this seems like a very special structure, 
does it really happen that often?

Yes! in fact, most critical points in neural 
net loss landscapes are saddle points



Saddle points
Critical points:

(local) minimum

(local) maximum

In higher dimensions:

Hessian matrix:

only maximum or minimum if all 
diagonal entries are positive or 
negative!

how often is that the case?



Which way do we go?

we don’t always move toward the optimum!

?

the steepest direction is not always best!

more on this later…



Improvement directions



A better direction…

?



Newton’s method

Hessian

gradient



Tractable acceleration
Why is Newton’s method not a viable way to improve neural network optimization?

Hessian

if using naïve approach, though fancy methods can be 
much faster if they avoid forming the Hessian explicitly

because of this, we would really prefer methods that 
don’t require second derivatives, but somehow 
“accelerate” gradient descent instead



Momentum
averaging together successive gradients 
seems to yield a much better direction!

Intuition: if successive gradient steps point in different
directions, we should cancel off the directions that disagree

if successive gradient steps point in similar directions, we 
should go faster in that direction



Momentum

“blend in” previous direction

this is a very simple update rule

in practice, it brings some of the benefits of 
Newton’s method, at virtually no cost

this kind of momentum method has few guarantees

a closely related idea is “Nesterov accelerated gradient,” 
which does carry very appealing guarantees (in practice we 
usually just momentum)



Momentum Demo

visualizations based on Gabriel Goh’s distill.pub article: https://distill.pub/2017/momentum/



Gradient scale

Intuition: the sign of the gradient tells us which way to go along each dimension,
but the magnitude is not so great

Even worse: overall magnitude of the gradient can change drastically over the 
course of optimization, making learning rates hard to tune

huge when far from optimum

Idea: “normalize” out the magnitude of the gradient along each dimension



Algorithm: RMSProp

this is roughly the squared length of each dimension

each dimension is divided by its magnitude



Algorithm: AdaGrad

RMSProp:

How does AdaGrad and RMSProp compare?

AdaGrad has some appealing guarantees for convex problems

Learning rate effectively “decreases” over time, which is good for convex problems

But this only works if we find the optimum quickly before the rate decays too much

RMSProp tends to be much better for deep learning (and most non-convex problems)



Algorithm: Adam
Basic idea: combine momentum and RMSProp

first moment estimate (“momentum-like”)

second moment estimate

why?
so early on these values will be small, and this 
correction “blows them up” a bit for small k

small number to prevent division by zero

good default settings:



Stochastic optimization



Why is gradient descent expensive?

requires summing over all
datapoints in the dataset

ILSVRC (ImageNet), 2009: 1.5 million images

could simply use fewer 
samples, and still have a 
correct (unbiased) estimator



Stochastic gradient descent
with minibatches

draw B datapoints at random from dataset of size N

can also use momentum, ADAM, etc.

each iteration samples a different minibatch

Stochastic gradient descent in practice:

sampling randomly is slow due to random memory access

instead, shuffle the dataset (like a deck of cards…) once, in advance

then just construct batches out of consecutive groups of B datapoints



Learning rates
lo

ss

epoch

1 epoch

good learning rate
low learning rate

Low learning rates can result in 
convergence to worse values!
This is a bit counter-intuitive

high learning rate



Decaying learning rates
AlexNet trained on ImageNet Learning rate decay schedules usually 

needed for best performance with 
SGD (+momentum)

Often not needed with ADAM

Opinions differ, some people think 
SGD + momentum is better than 
ADAM if you want the very best 
performance (but ADAM is easier to 
tune)



Tuning (stochastic) gradient descent
Hyperparameters:

0.99 is good keep the defaults (usually)

best to use the biggest rate that still works, decay over time

larger batches = less noisy gradients, usually “safer” but more expensive

What to tune hyperparameters on?

Technically we want to tune this on the training loss, since it is a parameter of the optimization

Often tuned on validation loss

Relationship between stochastic gradient and regularization is 
complex – some people consider it to be a good regularizer! 
(this suggests we should use validation loss)


