
Backpropagation
Designing, Visualizing and Understanding Deep Neural Networks

CS W182/282A

Instructor: Sergey Levine
UC Berkeley



Neural networks



Drawing computation graphs
what expression does this compute?

equivalently, what program does this correspond to?

this is a MSE loss with a linear regression model

neural networks are computation graphs

if we design generic tools for computation graphs, we 
can train many kinds of neural networks



Drawing computation graphs
what expression does this compute?

equivalently, what program does this correspond to?

this is a MSE loss with a linear regression model

neural networks are computation graphs

if we design generic tools for computation graphs, we 
can train many kinds of neural networks

dot product

a simpler way to draw the same thing:



Logistic regression
let’s draw the computation graph for logistic regression

with the negative log-likelihood loss

remember this is a vector!

“one-hot” vector
1

0

0

1
or

what does this produce?



Logistic regression
a simpler way to draw the same thing:

matrix



Drawing it even more concisely
Notice that we have two types of variables:

the parameters usually affect one specific operation

(though there is often parameter sharing, e.g., conv nets – more on this later)

also called fully connected 
layer



Neural network diagrams
(simplified) computation graph diagram neural network diagram

softmax
cross-ent

loss

2x1 2x1

linear
layer

often we don’t draw this 
b/c cross-entropy 

always follows softmax

often we don’t draw this b/c 
every layer has parameters

softmax

2x1 2x1

linear
layer

simplified 
drawing:



Logistic regression with features



Learning the features
Problem: how do we represent the learned features?

Idea: what if each feature is a (binary) logistic regression output?

which layer

which feature
= rows of weight matrix

per-element sigmoid

not the same as softmax

each feature is independent



Let’s draw this!

2x1

3x13x2

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss



Simpler drawing

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

2x1

sigmoid
layer

3x1

linear
layer

softmax

2x1 3x1

softmax
sigmoid

layer

linear
layer

2x1 2x1

simpler way to draw the same thing: even simpler:



Doing it multiple times

2x1

3x13x2 3x13x3 3x13x3

2x1 3x1

softmax
sigmoid

layer

linear
layer

2x13x1

sigmoid
layer

3x1

sigmoid
layer



Activation functions

we don’t have to use a sigmoid!

a wide range of non-linear functions will work

these are called activation functions why non-linear?

multiple linear layers = one linear layer

enough layers = we can represent anything (so long as they’re nonlinear)

we’ll discuss specific choices later

2x1 3x1

softmax
sigmoid

layer

linear
layer

2x13x1

sigmoid
layer

3x1

sigmoid
layer



Demo time!

Source: https://playground.tensorflow.org/



Aside: what’s so neural about it?

dendrites receive signals from other neurons

axon transmits signal to 
downstream neurons

neuron “decides” 
whether to fire based 
on incoming signals

artificial “neuron” sums up signals 
from upstream neurons

(also referred to as “units”)

upstream activations

neuron “decides” how 
much to fire based on 
incoming signals

activation function

activations transmitted 
to downstream units



Training neural networks



What do we need?

1. Define your model class

2. Define your loss function

3. Pick your optimizer

4. Run it on a big GPU

2x1 3x1

softmax
sigmoid

layer

linear
layer

2x13x1

sigmoid
layer

3x1

sigmoid
layer

negative log-likelihood, just like before

stochastic gradient descent

what do we need?



Aside: chain rule High-dimensional chain rule

Row or column?

In this lecture: In some textbooks:

Just two different conventions!



Chain rule for neural networks

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

A neural network is just a composition of functions

So we can use chain rule to compute gradients!



Does it work?

We can calculate each of these Jacobians!

Example:
Why might this be a bad idea?



Doing it more efficiently

this is always true because 
the loss is scalar-valued!

Idea: start on the right



The backpropagation algorithm
“Classic” version softmax

sigmoid
layer

linear
layer

sigmoid
layer

sigmoid
layer

2x1



Let’s walk through it…

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss



Practical implementation



Neural network architecture details

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

Some things we should figure out:

How many layers?

How big are the layers?

What type of activation function?



Bias terms

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

additional parameters in each linear layer



What else do we need for backprop?

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss



Backpropagation recipes: linear layer

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

(just to simplify notation!)



Backpropagation recipes: linear layer

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

(just to simplify notation!)



Backpropagation recipes: linear layer

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

(just to simplify notation!)



Backpropagation recipes: linear layer

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

(just to simplify notation!)



Backpropagation recipes: sigmoid

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss



Backpropagation recipes: ReLU

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss



Summary

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss


