Convolutional Networks
Designing, Visualizing and Understanding Deep Neural Networks

CS W182/282A

Instructor: Sergey Levine
UC Berkeley
Neural network with images

We need a better way!

Image is $128 \times 128 \times 3 = 49,152$

$z^{(1)}$ is 64-dim

$64 \times 49,152 \approx 3,000,000$
An idea...

Observation: many useful image features are local
to tell if a particular patch of image contains a feature, enough to look at the local patch
An idea...

Observation: many useful image features are **local**

- patch is $3 \times 3 \times 3 = 27$
- $z^{(1)}$ is 64-dim

 $64 \times 27 = 1728$

We get a **different** output at each image location!
An idea...

Observation: many useful image features are **local**

- patch is $3 \times 3 \times 3 = 27$
- $z^{(1)}$ is 64-dim
- $64 \times 27 = 1728$

We get a **different** output at each image location!

don’t forget to apply non-linearity!
An idea…

Observation: many useful image features are **local**

- patch is \(3 \times 3 \times 3 = 27\)
- \(z^{(1)}\) is 64-dim
- \(64 \times 27 = 1728\)

We get a **different** output at each image location!

What do they look like?
An idea...

Observation: many useful image features are local

patch is $3 \times 3 \times 3 = 27$
$z^{(1)}$ is 64-dim
$64 \times 27 = 1728$

We get a different output at each image location!

but it’s still just as big as the original image!

take max for each channel over (for ex) 2x2 region
An idea...

Observation: many useful image features are **local**

- Patch is $3 \times 3 \times 3 = 27$
- $z^{(1)}$ is 64-dim
- $64 \times 27 = 1728$

We get a **different** output at each image location!
An idea…

Observation: many useful image features are **local**

- A patch of size $3 \times 3 \times 3 = 27$ contributes to the feature vector $z^{(1)}$ which is 64-dimensional.
- Therefore, $64 \times 27 = 1728$.

We get a **different** output at each image location!
What does a real conv net look like?

“LeNet” network for handwritten digit recognition
Implementing convolutional layers
Summary

- **Convolutional layer**
 - A way to avoid needing millions of parameters with images
 - Each layer is “local”
 - Each layer produces an “image” with (roughly) the same width & height, and number of channels = number of filters

- **Pooling**
 - If we ever want to get down to a single output, we must reduce resolution as we go
 - Max pooling: downsample the “image” at each layer, taking the max in each region
 - This makes it robust to small translation changes

- **Finishing it up**
 - At the end, we get something small enough that we can “flatten” it (turn it into a vector), and feed into a standard fully connected layer
ND arrays/tensors

all these operations will involve \(N \)-dimensional arrays

often used synonymously with *tensor*

input image: \(\text{HEIGHT} \times \text{WIDTH} \times \text{CHANNELS} \)

filter: \(\text{FLT.HEIGHT} \times \text{FLT.WIDTH} \times \text{OUTPUT CHAN} \times \text{INPUT CHAN} \)

activations: \(\text{HEIGHT} \times \text{WIDTH} \times \text{LAYER.CHANNELS} \)

The “inner” (rightmost) dimensions work just like vectors/matrices

Matching “outer” dimensions (e.g., height/width) are treated as “broadcast” (i.e., elementwise operations)

Convolution operations performs a tiny matrix multiply at each position (like a tiny linear layer at each position)
Convolutional layer in equations

all these operations will involve N-dimensional arrays
often used synonymously with tensor
input image: $\text{HEIGHT} \times \text{WIDTH} \times \text{CHANNELS}$
filter: $\text{FLT.HEIGHT} \times \text{FLT.WIDTH} \times \text{OUTPUT CHAN} \times \text{INPUT CHAN}$
activations: $\text{HEIGHT} \times \text{WIDTH} \times \text{LAYER.CHANNELS}$

$$a^{(1)} \rightarrow z^{(2)} \quad W^{(2)} : H_F \times W_F \times C_{out} \times C_{in}$$

$$H_{in} \times W_{in} \times C_{in} \quad H_{out} \times W_{out} \times C_{out}$$
equal or almost equal (more on this later)
Convolutional layer in equations

\[a^{(1)} \rightarrow z^{(2)} \]

\[W^{(2)}: H_F \times W_F \times C_{out} \times C_{in} \]

\[H_{in} \times W_{in} \times C_{in} \]

\[H_{out} \times W_{out} \times C_{out} \]

equal or almost equal (more on this later)

\[
z^{(2)}[i, j, k] = \sum_{l=0}^{H_F-1} \sum_{m=0}^{H_W-1} \sum_{n=0}^{C_{in}-1} W^{(2)}[l, m, k, n] \ a^{(1)}[i + l - (H_F - 1)/2, j + m - (H_W - 1)/2, n]
\]

\[
z^{(2)}[i, j] = \sum_{l=0}^{H_F-1} \sum_{m=0}^{H_W-1} W^{(2)}[l, m] \ a^{(1)}[i + l - (H_F - 1)/2, j + m - (H_W - 1)/2]
\]

\[
a^{(2)}[i, j, k] = \sigma(z^{(2)}[i, j, k]) \quad \text{Activation function applied per element, just like before}
\]

Simple principle, but a bit complicated to write
Padding and edges

Option 1: cut off the edges

Problem: our activations shrink with every layer

Pop quiz:
input is 32x32x3
filter is 5x5x6
what is the output in this case?

“radius” is \((H_F - 1)/2\) on each side = 2

\[H_{\text{out}} = H_{\text{in}} - ((H_F - 1)/2) \times 2 = 28 \]

28 x 28 x 6

Some people don’t like this
Padding and edges

Option 2: zero pad

Detail: remember to subtract the image mean first
(fancier contrast normalization often used in practice)

Advantage: simple, size is preserved

Disadvantage: weird effect at boundary
(this is usually not a problem, hence why this method is so popular)
Strided convolutions

standard conv net structure at each layer:

1. Apply conv, $H \times W \times C_{in} \rightarrow H \times W \times C_{out}$
2. Apply activation func σ, $H \times W \times C_{out} \rightarrow H \times W \times C_{out}$
3. Apply pooling (width N), $H \times W \times C_{out} \rightarrow H/N \times W/N \times C_{out}$

this can be very expensive computationally

$C_{out} \times C_{in}$ matrix multiply at each position in $H \times W$ image!

Idea: what if skip over some positions?

Amount of skipping is called the **stride**

Some people think that strided convolutions are just as good as conv + pooling
Examples of convolutional neural networks
AlexNet [Krizhevsky et al. 2012]

Why is this model important?

➢ “Classic” medium-depth convolutional network design (a bit like a modernized version of LeNet)
➢ Widely known for being the first neural network to attain state-of-the-art results on the ImageNet large-scale visual recognition challenge (ILSVRC)
trained on two GPUs, hence why the diagram is “split”
... we don’t worry about this sort of thing these days

Pop quiz: how many parameters in CONV1?
Weights: 11x11x3x96 = 34,848
Biases: 96
Total: 34,944
AlexNet [Krizhevsky et al. 2012]

Trained on two GPUs, hence why the diagram is “split” … we don’t worry about this sort of thing these days

CONV1: 11x11x96, Stride 4, maps 224x224x3 -> 55x55x96 [without zero padding]

POOL1: 3x3x96, Stride 2, maps 55x55x96 -> 27x27x96

NORM1: Local normalization layer [not widely used anymore, but we’ll talk about normalization later]

CONV2: 5x5x256, Stride 1, maps 27x27x96 -> 27x27x256 [with zero padding]

POOL2: 3x3x256, Stride 2, maps 27x27x256 -> 13x13x256

NORM2: Local normalization layer

CONV3: 3x3x384, Stride 1, maps 13x13x256 -> 13x13x384 [with zero padding]

CONV4: 3x3x384, Stride 1, maps 13x13x384 -> 13x13x384 [with zero padding]

CONV5: 3x3x256, Stride 1, maps 13x13x256 -> 13x13x256 [with zero padding]

POOL3: 3x3x256, Stride 2, maps 13x13x256 -> 6x6x256

FC6: 6x6x256 -> 9,216 -> 4,096 [matrix is 4,096 x 9,216]

FC7: 4,096 -> 4,096

FC8: 4,096 -> 1,000

SOFTMAX
AlexNet [Krizhevsky et al. 2012]

- **CONV1**: 11x11x96, Stride 4, maps 224x224x3 -> 55x55x96 [without zero padding]
- **POOL1**: 3x3x96, Stride 2, maps 55x55x96 -> 27x27x96
- **NORM1**: Local normalization layer
- **CONV2**: 5x5x256, Stride 1, maps 27x27x96 -> 27x27x256 [with zero padding]
- **POOL2**: 3x3x256, Stride 2, maps 27x27x256 -> 13x13x256
- **NORM2**: Local normalization layer
- **CONV3**: 3x3x384, Stride 1, maps 13x13x256 -> 13x13x384 [with zero padding]
- **CONV4**: 3x3x384, Stride 1, maps 13x13x384 -> 13x13x384 [with zero padding]
- **CONV5**: 3x3x256, Stride 1, maps 13x13x256 -> 13x13x256 [with zero padding]
- **POOL3**: 3x3x256, Stride 2, maps 13x13x256 -> 6x6x256
- **FC6**: 6x6x256 -> 9,216 -> 4,096 [matrix is 4,096 x 9,216]
- **FC7**: 4,096 -> 4,096
- **FC8**: 4,096 -> 1,000
- **SOFTMAX**

- Don’t forget: ReLU nonlinearities after every CONV or FC layer (except the last one!)
- Trained with regularization (we’ll learn about these later):
 - Data augmentation
 - Dropout
- Local normalization (not used much anymore, but there are other types of normalization we do use)
VGG

Why is this model important?

- Still often used today
- Big increase in **depth** over previous best model
- Start seeing “homogenous” stacks of multiple convolutions interspersed with resolution reduction
VGG

CONV: 3x3x64, maps 224x224x3 -> 224x224x64
CONV: 3x3x64, maps 224x224x64 -> 224x224x64
POOL: 2x2, maps 224x224x64 -> 112x112x64
CONV: 3x3x128, maps 112x112x64 -> 112x112x128
CONV: 3x3x128, maps 112x112x128 -> 112x112x128
POOL: 2x2, maps 112x112x128 -> 56x56x128
CONV: 3x3x256, maps 56x56x128 -> 56x56x256
CONV: 3x3x256, maps 56x56x256 -> 56x56x256
CONV: 3x3x256, maps 56x56x256 -> 56x56x256
POOL: 2x2, maps 56x56x256 -> 28x28x256
CONV: 3x3x512, maps 28x28x256 -> 28x28x512
CONV: 3x3x512, maps 28x28x512 -> 28x28x512
CONV: 3x3x512, maps 28x28x512 -> 28x28x512
POOL: 2x2, maps 28x28x512 -> 14x14x512
CONV: 3x3x512, maps 14x14x512 -> 14x14x512
CONV: 3x3x512, maps 14x14x512 -> 14x14x512
CONV: 3x3x512, maps 14x14x512 -> 14x14x512
POOL: 2x2, maps 14x14x512 -> 7x7x512
FC: 7x7x512 -> 25,088 -> 4,096 ➢ More layers = more processing, which is why we see repeated blocks
FC: 4,096 -> 4,096
FC: 4,096 -> 1,000
SOFTMAX ➢ Which parts use the most memory?
➢ Which parts have the most parameters?

Almost all parameters are here
ResNet 152 layers!

Small 18-layer prototype (ResNet-18)

Don’t bother with huge FC layer at the end, just average pool over all positions and have one linear layer.

Images from He et al., and others
ResNet

CIFAR-10 experiments

Images from He et al., and others
What’s the main idea?

Why is this a good idea?

Images from He et al., and others
Why are deep networks hard to train?

\[
\frac{d\mathcal{L}}{dW^{(1)}} = \frac{dz^{(1)}}{dW^{(1)}} \frac{da^{(1)}}{dz^{(1)}} \frac{dz^{(2)}}{da^{(1)}} \frac{d\mathcal{L}}{dz^{(2)}}
\]

\[
\frac{d\mathcal{L}}{dW^{(1)}} = J_1 J_2 J_3 \ldots J_n \frac{d\mathcal{L}}{dz^{(n)}}
\]

If we multiply many many numbers together, what will we get?

- If most of the numbers are < 1, we get 0
- If most of the numbers are > 1, we get infinity
- We only get a reasonable answer if the numbers are all close to 1!

ReLU: \(\left(\frac{df}{dz} \right)_i = \text{Ind}(z_i \geq 0) \)

For matrices, this means we want \(J_i \approx I \)
So why is this a good idea?

Images from He et al., and others

\[\frac{dH}{dx} \]

could be **big** or **small**

not close to \(\mathbf{I} \)

\[\frac{dH}{dx} = \frac{dF}{dx} + \mathbf{I} \]

If weights are not too big, this will be small(ish)
ResNet

- “Generic” blocks with many layers, interspersed with a few pooling operations
- No giant FC layer at the end, just mean pool over all x/y positions and a small(ish) FC layer to go into the softmax
- Residual layers to provide for good gradient flow