Convolutional Networks

Designing, Visualizing and Understanding Deep Neural Networks

CSW182/282A

Instructor: Sergey Levine
UC Berkeley

Neural network with images

(1) (1) linear
layer layer

64x1 64x1

image is 128 x 128 x 3 = 49,152
21 ig 64-dim
64 x 49,152 ~ 3, 000, 000

We need a better way!

An idea...

edge detectors? ears? noses?

Observation: many useful image features are local

to tell if a particular patch of image contains a feature, enough to look at the local patch

height: 128

An idea...

Observation: many useful image features are local

patch is 3 x 3 x 3 =27

21 is 64-dim
64 x 27 = 1728

We get a different output at each image location!

,\r)‘,b our “mini-layer” (called a filter)

An idea...

Observation: many useful image features are local

patch is 3 x 3 x 3 =27

21 is 64-dim
64 x 27 = 1728

We get a different output at each image location!

don’t forget to apply non-linearity!

—

height: 128

An idea...

Observation: many useful image features are local

patch is 3 x 3 x 3 =27

21 is 64-dim
64 x 27 = 1728

We get a different output at each image location!

What do they look like?

height: 128

height: 128

An idea...

Observation: many useful image features are local

S

\Q’.

%
o

depth: 4

patch is 3 x 3 x 3 =27

21 is 64-dim
04 x 27 = 1728

but it’s still just as big as the original image!

1x1x4

1x1x4

take max for each channel
over (for ex) 2x2 region

224x224x64

pool

112x112x64

> 112
224 downsampling !
112

We get a different output at each image location!

height: 128

An idea...

Observation: many useful image features are local

patch is 3 x 3 x 3 =27

21 is 64-dim
64 x 27 = 1728

We get a different output at each image location!

convolution

max pooling

height: 128

An idea...

Observation: many useful image features are local

patch is 3 x 3 x 3 =27

21 is 64-dim
64 x 27 = 1728

We get a different output at each image location!

3y 3y
NS &
$ $V
q
Vo)
2 . X2X
(]
=
<> <>
depth: 4 depth: 8

What does a real conv net look like?

C3:f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16 @5x5

6@28x28
rl_ Cs: layer F6: layer QUTPUT

32x32 S2: f. maps
120

r

‘ FuII conr#echon
Convolutions Subsampling Convolutions Subsampllng Full connectlon

\

pooling

o

“LeNet” network for handwritten digit recognition

Implementing convolutional layers

summary

» Convolutional layer
» A way to avoid needing millions of parameters with images
» Each layer is “local”
» Each layer produces an “image” with (roughly) the same
width & height, and number of channels = number of filters
» Pooling
» If we ever want to get down to a single output, we must
reduce resolution as we go
» Max pooling: downsample the “image” at each layer, taking
the max in each region
» This makes it robust to small translation changes
» Finishing it up
» At the end, we get something small enough that we can
“flatten” it (turn it into a vector), and feed into a standard

fully connected layer

height: 128

<>
depth: 4

C3: f. maps 16@10x10

C1: feature maps S4: 1. maps 16@5x5
6@28x2!

INPUT
32x32

S2: f. maps
6@14x14

‘ Full connection
Convolutions Subsampling Convolutions ~ Subsampling Full connection

ND arrays/tensors

all these operations will involve N-dimensional arrays

often used synonymously with tensor

input image: HEIGHT x WIDTH x CHANNELS
filter: FLT.HEIGHT x FLT.WIDTH x OUTPUT CHAN x INPUT CHAN

activations: HEIGHT x WIDTH x LAYER.CHANNELS

The “inner” (rightmost) dimensions
work just like vectors/matrices

N

Matching “outer” dimensions (e.g.,
height/width) are treated as “broadcast”
(i.e., elementwise operations)

height: 128

Convolution operations performs a tiny
matrix multiply at each position (like a <«
tiny linear layer at each position) depth: 3 depth: 4

&
~

Convolutional layer in equations

all these operationsn will involve N-dimensional arrays

often used synonymously with tensor
input image: HEIGHT x WIDTH x CHANNELS
filter: FLT.HEIGHT x FLT.WIDTH x OUTPUT CHAN x INPUT CHAN

activations: HEIGHT x WIDTH x LAYER.CHANNELS

o) — 2(2) W®: Hp x Wp x Cyy X Ciy @

Hin X I/Vin X Cin Hout X Wout X C,out
\ /

equal or almost equal (more on this later)

Convolutional layer in equations

o) — »(2) W Hp x Wg x Coue X Cin @

Hin X I/Vim X Cvin Hout X Wout X C’out
\ /

equal or almost equal (more on this later)

Hp—1Hyw —1C;,—1

DGk =Y Y > WO m, k) aV[i+1— (Hp —1)/2,j +m— (Hw — 1)/2,n)
=0 m=0 n=0

Hp—1Hy —1
2Pligl=Y Y WOhmlaVli+1— (Hp = 1)/2,j+m = (Hw —1)/2]
[=0 m=0
@i, 5, k] = o(2@i, 4, k]) Activation function applied per element, just like before

Simple principle, but a bit complicated to write

Padding and edges

HEkdEENn
?

I_I_I_I_I_I

Option 1: cut off the edges

Problem: our activations shrink with every layer

Pop quiz: Some people don’t like this

input is 32x32x3
- filter is 5x5x6
— I what is the output in this case?

“radius” is (Hr — 1)/2 on each side = 2
Hout = Hi — ((HF — 1)/2) X 2 = 28
28 X 28 X 6

Padding and edges

HEkdEENn
?

Option 2: zero pad Detail: remember to subtract the image mean first
(fancier contrast normalization often used in practice)

Advantage: simple, size is preserved

Disadvantage: weird effect at boundary

(this is usually not a problem, hence
why this method is so popular)

Strided convolutions

standard conv net structure at each layer:

1. Apply conv, H x W x Ci, = H X W X Cout

2. Apply activation func o, H X W X Cout = H X W X Cous 7 y
3. Apply pooling (width N), H x W x Couy — H/N X W/N X Cout ZXM\ET

this can be very expensive computationally

Cout X Cin matrix multiply at each position in H X W image! depti 4

Idea: what if skip over some positions?

Amount of skipping is
called the stride

Some people think that
strided convolutions are just
as good as conv + pooling

Examples of convolutional neural networks

ILSVRC (ImageNet), 2009: 1.5 million images

| 1000 categories
M\ eX N et [Krizhevsky et al. 2012] s eranr

ay o et :l"‘ 3 ¥ jﬁl . iy,
Cingene: - : A N\t
e 152 192 128 2 J0as \dense
128 S e
27
VAN 13 \ 13
= = vl ey
4. ! A s
. - - e . i
27 T\ 3\ 13
142 192 128 | Gl king crab, Alaska erab sidewinder salishaker, salt shaker reel hatchet GRS
H ax 128 M ax pencil box, pencil case pizza, pizza pic maze, labyrinth pill bostle s|c1‘hoscope \'flsc schipperke
I.I'I . rubber eraser, rubber strawbermy gar, garfish water bottle whistle pitcher, ewer groenendacl
pﬂu ! g puulln g ballpoint, ballpoint pen orange valley, vale lotion ice lolly, lolly cofleepot doormat, welcome mat
pencil sharpener fig hammerhead hair spray hair spray mask teddy, teddy bear
carpenter’s kit, tool kit ice cream, icecream seca snake beer bottle maypole cup Jigsaw puzzle

Why is this model important?

» “Classic” medium-depth convolutional network wa
design (a bit like a modernized version of LeNet)
» Widely known for being the first neural network to
attain state-of-the-art results on the ImageNet H e

large-scale visual recognition challenge (ILSVRC) s =l = A -
B BN SN B H

AlexNet ZFNet VGG GoogleNet ResNet

AlexNet

height: 224

224

[Krizhevsky et al. 2012]

RelLU activation

<>
depth: 96
POOL1: 3x3

Stride 2

S

7

ight

he

£
\?’/

3X3ﬁ

<>
depth: 96

T T ENR o
i) :.:“..': x .-_'.-;‘:' : E x o
o ¥ 102 153 128 2088 J0as \dense
7 128 R o]]
X 13- 13 \ 13
' = ' WiEEs 13 dense dense
N
) 192 192 128 Max L | |
Max 138 Max pooling %% 2048
pooling pooling

—

trained on two GPUs, hence
why the diagram is “split”

... we don’t worry about this
sort of thing these days

Pop quiz: how many parameters in CONV1?
Weights: 11x11x3x96 = 34,848

Biases: 96

Total: 34,944

pooling w/ overlapping regions

A ‘ eX N et [Krizhevsky et al. 2012]

\ - KEN trained on two GPUs, hence
S T why the diagram is “split”
\ 1 : 1R S - ... we don’t worry about this

g\ A | sort of thing these days

CONV1: 11x11x96, Stride 4, maps 224x224x3 -> 55x55x96 [without zero padding]
POOL1: 3x3x96, Stride 2, maps 55x55x96 -> 27x27x96

NORM1.: Local normalization layer [not widely used anymore, but we’ll talk about normalization later]
CONV2: 5x5x256, Stride 1, maps 27x27x96 -> 27x27x256 [with zero padding]
POOL2: 3x3x256, Stride 2, maps 27x27x256 -> 13x13x256

NORMZ2: Local normalization layer

CONV3: 3x3x384, Stride 1, maps 13x13x256 -> 13x13x384 [with zero padding]
CONV4: 3x3x384, Stride 1, maps 13x13x384 -> 13x13x384 [with zero padding]
CONVS5: 3x3x256, Stride 1, maps 13x13x256 -> 13x13x256 [with zero padding]
POOL3: 3x3x256, Stride 2, maps 13x13x256 -> 6x6x256

FC6: 6x6x256 -> 9,216 -> 4,096 [matrix is 4,096 x 9,216]

FC7: 4,096 -> 4,096

FC8: 4,096 -> 1,000

SOFTMAX

A ‘ eX N et [Krizhevsky et al. 2012] » Don't forget: ReLU nonlinearities after every CONV

or FC layer (except the last one!)
» Trained with regularization (we’ll learn about
\ these later):
%] » Data augmentation

A \ - Y N

| iR » Dropout
NI " e » Local normalization (not used much anymore, but
@\ LG there are other types of normalization we do use)

3 FT]

CONV1: 11x11x96, Stride 4, maps 224x224x3 -> 55x55x96 [without zero padding]
POOL1: 3x3x96, Stride 2, maps 55x55x96 -> 27x27x96

NORML1: Local normalization layer

CONV2: 5x5x256, Stride 1, maps 27x27x96 -> 27x27x256 [with zero padding]
POOL2: 3x3x256, Stride 2, maps 27x27x256 -> 13x13x256

NORMZ2: Local normalization layer

CONV3: 3x3x384, Stride 1, maps 13x13x256 -> 13x13x384 [with zero padding]
CONV4: 3x3x384, Stride 1, maps 13x13x384 -> 13x13x384 [with zero padding]
CONVS5: 3x3x256, Stride 1, maps 13x13x256 -> 13x13x256 [with zero padding]
POOL3: 3x3x256, Stride 2, maps 13x13x256 -> 6x6x256

FC6: 6x6x256 -> 9,216 -> 4,096 [matrix is 4,096 x 9,216]

FC7: 4,096 -> 4,096

FC8: 4,096 -> 1,000

SOFTMAX

VGG

224 x 224 x3 224 x 224 x 64

112 x 112 x 128

56|x 56 x 256

TX %512
28 x 28 x 512

gléxdtxsiz 1x1x4096 1x1x 1000

=) convolution+RelLU
) max pooling
fully nected+RelLU
softmax

Why is this model important?

> Still often used today

> Big increase in depth over previous best model

» Start seeing “homogenous” stacks of multiple
convolutions interspersed with resolution reduction

VGG

CONV: 3x3x64, maps 224x224x3 -> 224x224x64
CONV: 3x3x64, maps 224x224x64 -> 224x224x64
POOL: 2x2, maps 224x224x64 -> 112x112x64
CONV: 3x3x128, maps 112x112x64 -> 112x112x128
CONV: 3x3x128, maps 112x112x128 -> 112x112x128
POOL: 2x2, maps 112x112x128 -> 56x56x128
CONV: 3x3x256, maps 56x56x128 -> 56x56x256
CONV: 3x3x256, maps 56x56x256 -> 56x56x256
CONV: 3x3x256, maps 56x56x256 -> 56x56x256
POOL: 2x2, maps 56x56x256 -> 28x28x256

CONV: 3x3x512, maps 28x28x256 -> 28x28x512
CONV: 3x3x512, maps 28x28x512 -> 28x28x512
CONV: 3x3x512, maps 28x28x512 -> 28x28x512
POOL: 2x2, maps 28x28x512 -> 14x14x512

CONV: 3x3x512, maps 14x14x512 -> 14x14x512
CONV: 3x3x512, maps 14x14x512 -> 14x14x512
CONV: 3x3x512, maps 14x14x512 -> 14x14x512
POOL: 2x2, maps 14x14x512 -> 7x7x512

224 x 224 x3 224 x 224 x 64

112 x 112 x 128

%Ix 56 x 256
28 x 28 x 512

TX %512

14 x 14 x 512 1x1x4096 1x1x1000

() convolution+ReLU
] max pooling
fully nected+RelLU
softmax

» More layers = more processing, which is
why we see repeated blocks

» Which parts use the most memory?

» Which parts have the most parameters?

FC: 7x7x512 -> 25,088 -> 4,096 «——— almost all parameters are here

FC: 4,096 -> 4,096
FC: 4,096 -> 1,000
SOFTMAX

RESNet 152 layers!

Ski

Connection small 18-layer prototype (ResNet-18) 25

~
N

C

w

-152 layers

o
M I S 3 & .
e by X : don’t bother with huge FC layer at
stride =2 g / 2 1o
. 16.4
& .0 Py . the end, just average pool over all
," ." .“ * . . .] 7

g : i 2 / positions and have one linear layer : 22 layeff

* — ' ' =l ' : "

8 N W Y w.ol J‘Q |: 7.3 6.7
" — g ;' El ;; = 7 ﬁ -Nn b %L 51 o E E"g _g. 5 | shallow | I S;uycl's | 8 'lalsl's | A [Z
iR BB RN o B8 &

: A 3 E‘ g L BB OB OE (2 = ILSVRC’'10 ILSVRC'11 ILSVRC’12 ILSVRC'13 ILSVRC'14 ILSVRC'M ILSVRC'15
_ i s [j Ul B ‘ AlexNet ZFNet VGG GoogleNe®y ResNet
J J J |}
" Layer 1
\ \/ Layer 3 Laver 4 Fully connected
fc 128
Identical ConvNets
AlexNet, 8 layers i VGG, 19 layers ResNet, 152 layers ~s
(ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2015) | 3x3 C°§V: 128 | Y
["3x3 corv 1281~

152 layers

Images from He et al., and others

ResNet
CIFAR-10 experiments

CIFAR-10 plain nets

200

/ 56-layer
. 44-layer
g , . 32-layer

= or - — - }M‘_—..\'\,‘--"' e
2 S W 20-layer

solid: test
b] 2 3 3 5 6 dashed: train
iter. (1e4)

Images from He et al., and others

error (%)

CIFAR-10 ResNets

= ResNet-20
“ResNet-32
“ResNet-44
===ResNet-56
=ResNet-1108

20-layer

o = 32-layer
Nikibon 44-layer
5 Ty A
i 56-layer
B 110-layer
‘o 1 2 T 4 s 6
iter. (1e4)

What’s the main idea?

stacked layers

* Plaint net

"

weight layer

lrelu

weight layer

I
Hx) lre u

Why is this a good idea?

Images from He et al., and others

* Residual net

X

weight layer

F(x)

lrelu

weight layer

H(x) =F(x) +x

identity
X

Why are deep networks hard to train?

dLl dz) daM) dz 4 df
dW® — dW D M da®) dz(?) ReLU: { gz) =™ (2 > 0)
dL dl
D = JyJods ... Jn—dz(n) |

If we multiply many many numbers together, what will we get?
If most of the numbers are < 1, we get O
If most of the numbers are > 1, we get infinity

We only get a reasonable answer if the numbers are all close to 1!

For matrices, this means we want J; ~ I

So why is this a good idea?

* Plaint net

"

weight layer

{ sUF r'jr‘, \ 1“'»-'1 relu
s A 4

weight layer
relu

Hx) Y

aH
dx
could be big or small

not close to I

Images from He et al., and others

“« Residual net

X

Y

weight

layer

F(x)

\ 4

relu

weight layer

Hx)=F(x)+x

relu
AH _dF
dr dz

If weights are not too big,
this will be small(ish)

/

+1

identity
X

ResNet

ResNet-152
/X7 conv, 64

» “Generic” blocks with many layers, interspersed with a few
pooling operations

» No giant FC layer at the end, just mean pool over all x/y
positions and a small(ish) FC layer to go into the softmax

» Residual layers to provide for good gradient flow

_-“

3x3 conv, 128 T“,
[3x3 colv 10837

152 layers

3x3 cohv, 5
[3x3 conv, 512
| 3x3 cc?w, 212

fc 6

