Convolutional Networks

Designing, Visualizing and Understanding Deep Neural Networks
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Neural network with images

(1) (1) linear
layer layer

64x1 64x1

image is 128 x 128 x 3 = 49,152
21 ig 64-dim
64 x 49,152 ~ 3, 000, 000

We need a better way!




An idea...

edge detectors? ears? noses?

Observation: many useful image features are local

to tell if a particular patch of image contains a feature, enough to look at the local patch



height: 128

An idea...

Observation: many useful image features are local

patch is 3 x 3 x 3 =27

21 is 64-dim
64 x 27 = 1728

We get a different output at each image location!

,\r)‘,b our “mini-layer” (called a filter)




An idea...

Observation: many useful image features are local

patch is 3 x 3 x 3 =27

21 is 64-dim
64 x 27 = 1728

We get a different output at each image location!

don’t forget to apply non-linearity!

—

height: 128




An idea...

Observation: many useful image features are local

patch is 3 x 3 x 3 =27

21 is 64-dim
64 x 27 = 1728

We get a different output at each image location!

What do they look like?

height: 128




height: 128

An idea...

Observation: many useful image features are local
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depth: 4

patch is 3 x 3 x 3 =27

21 is 64-dim
04 x 27 = 1728

but it’s still just as big as the original image!

1x1x4

1x1x4

take max for each channel
over (for ex) 2x2 region

224x224x64

pool

112x112x64

> 112
224 downsampling !
112

We get a different output at each image location!



height: 128

An idea...

Observation: many useful image features are local

patch is 3 x 3 x 3 =27

21 is 64-dim
64 x 27 = 1728

We get a different output at each image location!

convolution

max pooling




height: 128

An idea...

Observation: many useful image features are local

patch is 3 x 3 x 3 =27

21 is 64-dim
64 x 27 = 1728

We get a different output at each image location!
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What does a real conv net look like?

C3:f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16 @5x5

6@28x28
rl_ Cs: layer F6: layer  QUTPUT

32x32 S2: f. maps
120

r

‘ FuII conr#echon
Convolutions Subsampling Convolutions Subsampllng Full connectlon

\

pooling

o

“LeNet” network for handwritten digit recognition



Implementing convolutional layers



summary

» Convolutional layer
» A way to avoid needing millions of parameters with images
» Each layer is “local”
» Each layer produces an “image” with (roughly) the same
width & height, and number of channels = number of filters
» Pooling
» If we ever want to get down to a single output, we must
reduce resolution as we go
» Max pooling: downsample the “image” at each layer, taking
the max in each region
» This makes it robust to small translation changes
» Finishing it up
» At the end, we get something small enough that we can
“flatten” it (turn it into a vector), and feed into a standard

fully connected layer

height: 128

<>
depth: 4

C3: f. maps 16@10x10

C1: feature maps S4: 1. maps 16@5x5
6@28x2!

INPUT
32x32

S2: f. maps
6@14x14

‘ Full connection
Convolutions Subsampling Convolutions ~ Subsampling Full connection



ND arrays/tensors

all these operations will involve N-dimensional arrays

often used synonymously with tensor

input image: HEIGHT x WIDTH x CHANNELS
filter: FLT.HEIGHT x FLT.WIDTH x OUTPUT CHAN x INPUT CHAN

activations: HEIGHT x WIDTH x LAYER.CHANNELS

The “inner” (rightmost) dimensions
work just like vectors/matrices

N

Matching “outer” dimensions (e.g.,
height/width) are treated as “broadcast”
(i.e., elementwise operations)

height: 128

Convolution operations performs a tiny
matrix multiply at each position (like a <«
tiny linear layer at each position) depth: 3 depth: 4
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Convolutional layer in equations

all these operationsn will involve N-dimensional arrays

often used synonymously with tensor
input image: HEIGHT x WIDTH x CHANNELS
filter: FLT.HEIGHT x FLT.WIDTH x OUTPUT CHAN x INPUT CHAN

activations: HEIGHT x WIDTH x LAYER.CHANNELS

o) — 2(2) W®: Hp x Wp x Cyy X Ciy @

Hin X I/Vin X Cin Hout X Wout X C,out
\ /

equal or almost equal (more on this later)




Convolutional layer in equations

o) — »(2) W Hp x Wg x Coue X Cin @

Hin X I/Vim X Cvin Hout X Wout X C’out
\ /

equal or almost equal (more on this later)

Hp—1Hyw —1C;,—1

DGk =Y Y > WO m, k) aV[i+1— (Hp —1)/2,j +m— (Hw — 1)/2,n)
=0 m=0 n=0

Hp—1Hy —1
2Pligl=Y Y WOhmlaVli+1— (Hp = 1)/2,j+m = (Hw —1)/2]
[=0 m=0
@i, 5, k] = o(2@i, 4, k]) Activation function applied per element, just like before

Simple principle, but a bit complicated to write



Padding and edges

HEkdEENn
?

I_I_I_I_I_I

Option 1: cut off the edges

Problem: our activations shrink with every layer

Pop quiz: Some people don’t like this

input is 32x32x3
- filter is 5x5x6
— I what is the output in this case?

“radius” is (Hr — 1)/2 on each side = 2
Hout = Hi — ((HF — 1)/2) X 2 = 28
28 X 28 X 6




Padding and edges

HEkdEENn
?

Option 2: zero pad Detail: remember to subtract the image mean first
(fancier contrast normalization often used in practice)

Advantage: simple, size is preserved

Disadvantage: weird effect at boundary

(this is usually not a problem, hence
why this method is so popular)




Strided convolutions

standard conv net structure at each layer:

1. Apply conv, H x W x Ci, = H X W X Cout

2. Apply activation func o, H X W X Cout = H X W X Cous 7 y
3. Apply pooling (width N), H x W x Couy — H/N X W/N X Cout ZXM\ET

this can be very expensive computationally

Cout X Cin matrix multiply at each position in H X W image! depti 4

Idea: what if skip over some positions?

Amount of skipping is
called the stride

Some people think that
strided convolutions are just
as good as conv + pooling




Examples of convolutional neural networks



ILSVRC (ImageNet), 2009: 1.5 million images

| 1000 categories
M\ eX N et [Krizhevsky et al. 2012] s eranr

ay o et :l"‘ 3 ¥ jﬁl . iy,
Cingene: - : A N\t
e 152 192 128 2 J0as \dense
128 S e
27
VAN 13 \ 13
= = vl ey
4. ! A s
. - - e . i
27 T\ 3\ 13
142 192 128 | Gl king crab, Alaska erab sidewinder salishaker, salt shaker  reel hatchet GRS
H ax 128 M ax pencil box, pencil case pizza, pizza pic maze, labyrinth pill bostle s|c1‘hoscope \'flsc schipperke
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Why is this model important?

» “Classic” medium-depth convolutional network wa
design (a bit like a modernized version of LeNet)
» Widely known for being the first neural network to
attain state-of-the-art results on the ImageNet H e

large-scale visual recognition challenge (ILSVRC) s =l = A -
B BN SN B H

AlexNet ZFNet VGG GoogleNet ResNet



AlexNet

height: 224

224

[Krizhevsky et al. 2012]

RelLU activation

<>
depth: 96
POOL1: 3x3

Stride 2
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depth: 96

T T ENR o
i) :.:“..': x .-_'.-;‘:' : E x o
o ¥ 102 153 128 2088 J0as \dense
7 128 R o ] ]
X 13- 13 \ 13
' = ' WiEEs 13 dense dense
N
) 192 192 128 Max L | |
Max 138 Max pooling %% 2048
pooling pooling

—

trained on two GPUs, hence
why the diagram is “split”

... we don’t worry about this
sort of thing these days

Pop quiz: how many parameters in CONV1?
Weights: 11x11x3x96 = 34,848

Biases: 96

Total: 34,944

pooling w/ overlapping regions



A ‘ eX N et [Krizhevsky et al. 2012]

\ - KEN trained on two GPUs, hence
S T why the diagram is “split”
\ 1 : 1R S - ... we don’t worry about this

g\ A | sort of thing these days

CONV1: 11x11x96, Stride 4, maps 224x224x3 -> 55x55x96 [without zero padding]
POOL1: 3x3x96, Stride 2, maps 55x55x96 -> 27x27x96

NORM1.: Local normalization layer [not widely used anymore, but we’ll talk about normalization later]
CONV2: 5x5x256, Stride 1, maps 27x27x96 -> 27x27x256 [with zero padding]
POOL2: 3x3x256, Stride 2, maps 27x27x256 -> 13x13x256

NORMZ2: Local normalization layer

CONV3: 3x3x384, Stride 1, maps 13x13x256 -> 13x13x384 [with zero padding]
CONV4: 3x3x384, Stride 1, maps 13x13x384 -> 13x13x384 [with zero padding]
CONVS5: 3x3x256, Stride 1, maps 13x13x256 -> 13x13x256 [with zero padding]
POOL3: 3x3x256, Stride 2, maps 13x13x256 -> 6x6x256

FC6: 6x6x256 -> 9,216 -> 4,096 [matrix is 4,096 x 9,216]

FC7: 4,096 -> 4,096

FC8: 4,096 -> 1,000

SOFTMAX



A ‘ eX N et [Krizhevsky et al. 2012] » Don't forget: ReLU nonlinearities after every CONV

or FC layer (except the last one!)
» Trained with regularization (we’ll learn about
\ these later):
%] » Data augmentation

A \ - Y N

| iR » Dropout
NI " e » Local normalization (not used much anymore, but
@\ LG there are other types of normalization we do use)

3 FT]

CONV1: 11x11x96, Stride 4, maps 224x224x3 -> 55x55x96 [without zero padding]
POOL1: 3x3x96, Stride 2, maps 55x55x96 -> 27x27x96

NORML1: Local normalization layer

CONV2: 5x5x256, Stride 1, maps 27x27x96 -> 27x27x256 [with zero padding]
POOL2: 3x3x256, Stride 2, maps 27x27x256 -> 13x13x256

NORMZ2: Local normalization layer

CONV3: 3x3x384, Stride 1, maps 13x13x256 -> 13x13x384 [with zero padding]
CONV4: 3x3x384, Stride 1, maps 13x13x384 -> 13x13x384 [with zero padding]
CONVS5: 3x3x256, Stride 1, maps 13x13x256 -> 13x13x256 [with zero padding]
POOL3: 3x3x256, Stride 2, maps 13x13x256 -> 6x6x256

FC6: 6x6x256 -> 9,216 -> 4,096 [matrix is 4,096 x 9,216]

FC7: 4,096 -> 4,096

FC8: 4,096 -> 1,000

SOFTMAX



VGG

224 x 224 x3 224 x 224 x 64

112 x 112 x 128

56|x 56 x 256

TX %512
28 x 28 x 512

gléxdtxsiz 1x1x4096 1x1x 1000

=) convolution+RelLU
) max pooling
fully nected+RelLU
softmax

Why is this model important?

> Still often used today

> Big increase in depth over previous best model

» Start seeing “homogenous” stacks of multiple
convolutions interspersed with resolution reduction




VGG

CONV: 3x3x64, maps 224x224x3 -> 224x224x64
CONV: 3x3x64, maps 224x224x64 -> 224x224x64
POOL: 2x2, maps 224x224x64 -> 112x112x64
CONV: 3x3x128, maps 112x112x64 -> 112x112x128
CONV: 3x3x128, maps 112x112x128 -> 112x112x128
POOL: 2x2, maps 112x112x128 -> 56x56x128
CONV: 3x3x256, maps 56x56x128 -> 56x56x256
CONV: 3x3x256, maps 56x56x256 -> 56x56x256
CONV: 3x3x256, maps 56x56x256 -> 56x56x256
POOL: 2x2, maps 56x56x256 -> 28x28x256

CONV: 3x3x512, maps 28x28x256 -> 28x28x512
CONV: 3x3x512, maps 28x28x512 -> 28x28x512
CONV: 3x3x512, maps 28x28x512 -> 28x28x512
POOL: 2x2, maps 28x28x512 -> 14x14x512

CONV: 3x3x512, maps 14x14x512 -> 14x14x512
CONV: 3x3x512, maps 14x14x512 -> 14x14x512
CONV: 3x3x512, maps 14x14x512 -> 14x14x512
POOL: 2x2, maps 14x14x512 -> 7x7x512

224 x 224 x3 224 x 224 x 64

112 x 112 x 128

%Ix 56 x 256
28 x 28 x 512

TX %512

14 x 14 x 512 1x1x4096 1x1x1000

() convolution+ReLU
] max pooling
fully nected+RelLU
softmax

» More layers = more processing, which is
why we see repeated blocks

» Which parts use the most memory?

» Which parts have the most parameters?

FC: 7x7x512 -> 25,088 -> 4,096 «——— almost all parameters are here

FC: 4,096 -> 4,096
FC: 4,096 -> 1,000
SOFTMAX



RESNet 152 layers!

Ski

Connection small 18-layer prototype (ResNet-18) 25
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w
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o
M I S 3 & .
e by X : don’t bother with huge FC layer at
stride =2 g / 2 1o
. 16.4
& .0 Py . the end, just average pool over all
," ." .“ * . . . ] 7

g : i 2 / positions and have one linear layer : 22 layeff
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_ i s [ j Ul B ‘ AlexNet ZFNet VGG GoogleNe®y ResNet
J J J |}
" Layer 1
\ \/ Layer 3 Laver 4 Fully connected
fc 128
Identical ConvNets
AlexNet, 8 layers i VGG, 19 layers ResNet, 152 layers ~s
(ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2015) | 3x3 C°§V: 128 | Y
["3x3 corv 1281~

152 layers

Images from He et al., and others



ResNet
CIFAR-10 experiments

CIFAR-10 plain nets

200

/ 56-layer
. 44-layer
g , . 32-layer

= or - — - }M‘_—..\'\,‘--"' e
2 S W 20-layer

solid: test
b ] 2 3 3 5 6 dashed: train
iter. (1e4)

Images from He et al., and others

error (%)

CIFAR-10 ResNets

= ResNet-20
“ResNet-32
“ResNet-44
===ResNet-56
=ResNet-1108

20-layer

o = 32-layer
Nikibon 44-layer
5 Ty A
i 56-layer
B 110-layer
‘o 1 2 T 4 s 6
iter. (1e4)



What’s the main idea?

stacked layers

* Plaint net

"

weight layer

lrelu

weight layer

I
Hx) lre u

Why is this a good idea?

Images from He et al., and others

* Residual net

X

weight layer

F(x)

lrelu

weight layer

H(x) =F(x) +x

identity
X




Why are deep networks hard to train?

dLl dz) daM) dz 4 df
dW® — dW D M da®) dz(?) ReLU: { gz ) =™ (2 > 0)
dL dl
D = JyJods ... Jn—dz(n) |

If we multiply many many numbers together, what will we get?
If most of the numbers are < 1, we get O
If most of the numbers are > 1, we get infinity

We only get a reasonable answer if the numbers are all close to 1!

For matrices, this means we want J; ~ I



So why is this a good idea?

* Plaint net

"

weight layer

{ sUF r'jr‘, \ 1“'»-'1 relu
s A 4

weight layer
relu

Hx) Y

aH
dx
could be big or small

not close to I

Images from He et al., and others

“« Residual net

X

Y

weight

layer

F(x)

\ 4

relu

weight layer

Hx)=F(x)+x

relu
AH _dF
dr  dz

If weights are not too big,
this will be small(ish)

/

+1

identity
X




ResNet

ResNet-152
/X7 conv, 64

» “Generic” blocks with many layers, interspersed with a few
pooling operations

» No giant FC layer at the end, just mean pool over all x/y
positions and a small(ish) FC layer to go into the softmax

» Residual layers to provide for good gradient flow

_-“

3x3 conv, 128 T“,
[3x3 colv 10837

152 layers

3x3 cohv, 5
[ 3x3 conv, 512
| 3x3 cc?w, 212

fc 6




