
Convolutional Networks
Designing, Visualizing and Understanding Deep Neural Networks

CS W182/282A

Instructor: Sergey Levine
UC Berkeley



Neural network with images

[object label]

64x1

linear
layer

sigmoid

64x1

linear
layer

loss

We need a better way!



An idea…

Layer 1:

edge detectors?

Layer 2:

ears? noses?

Observation: many useful image features are local

to tell if a particular patch of image contains a feature, enough to look at the local patch



An idea…
Observation: many useful image features are local

We get a different output at each image location!

h
ei

gh
t:

 1
2

8

depth: 3

our “mini-layer” (called a filter)

d: 3

h
: 3

d: 4



An idea…
Observation: many useful image features are local

We get a different output at each image location!

h
ei

gh
t:

 1
2

8

depth: 3

d: 4

don’t forget to apply non-linearity!



An idea…
Observation: many useful image features are local

We get a different output at each image location!

h
ei

gh
t:

 1
2

8

depth: 3 depth: 4

h
ei

gh
t:

 1
2

8

What do they look like?



An idea…
Observation: many useful image features are local

We get a different output at each image location!

h
ei

gh
t:

 1
2

8

depth: 3 depth: 4

h
ei

gh
t:

 1
2

8 1x1x4
2x2x4

1x1x4

take max for each channel 
over (for ex) 2x2 region

but it’s still just as big as the original image!



An idea…
Observation: many useful image features are local

We get a different output at each image location!

h
ei

gh
t:

 1
2

8

depth: 3 depth: 4

h
ei

gh
t:

 1
2

8

2x2x4

h
ei

gh
t:

 6
4

depth: 4

max pooling

convolution



An idea…
Observation: many useful image features are local

We get a different output at each image location!

h
ei

gh
t:

 1
2

8

depth: 3 depth: 4

h
ei

gh
t:

 1
2

8

2x2x4

h
ei

gh
t:

 6
4

depth: 4
h

ei
gh

t:
 6

4
depth: 8

2x2x4

h
ei

gh
t:

 3
2

depth: 8



What does a real conv net look like?

“LeNet” network for handwritten digit recognition

pooling



Implementing convolutional layers



Summary
➢ Convolutional layer

➢ A way to avoid needing millions of parameters with images
➢ Each layer is “local”
➢ Each layer produces an “image” with (roughly) the same 

width & height, and number of channels = number of filters
➢ Pooling

➢ If we ever want to get down to a single output, we must 
reduce resolution as we go

➢ Max pooling: downsample the “image” at each layer, taking 
the max in each region

➢ This makes it robust to small translation changes
➢ Finishing it up

➢ At the end, we get something small enough that we can 
“flatten” it (turn it into a vector), and feed into a standard 
fully connected layer

depth: 4

2x2x4

h
ei

gh
t:

 6
4

depth: 4

h
ei

gh
t:

 1
2

8

depth: 3 depth: 4

h
ei

gh
t:

 1
2

8



ND arrays/tensors

h
ei

gh
t:

 1
2

8

depth: 3 depth: 4

h
ei

gh
t:

 1
2

8

The “inner” (rightmost) dimensions 
work just like vectors/matrices

Matching “outer” dimensions (e.g., 
height/width) are treated as “broadcast” 
(i.e., elementwise operations)

Convolution operations performs a tiny 
matrix multiply at each position (like a 
tiny linear layer at each position)



Convolutional layer in equations

equal or almost equal (more on this later)



Convolutional layer in equations

equal or almost equal (more on this later)

Simple principle, but a bit complicated to write

Activation function applied per element, just like before



Padding and edges

?

?

? ? ?

Option 1: cut off the edges

Pop quiz:
input is 32x32x3
filter is 5x5x6
what is the output in this case?

Problem: our activations shrink with every layer

Some people don’t like this



Padding and edges

?

?

? ? ?

Option 2: zero pad

0

0

0 0 0

Detail: remember to subtract the image mean first

(fancier contrast normalization often used in practice)

Advantage: simple, size is preserved

Disadvantage: weird effect at boundary

(this is usually not a problem, hence 
why this method is so popular)



Strided convolutions

depth: 4

2x2x4

h
ei

gh
t:

 6
4

depth: 4
this can be very expensive computationally

Idea: what if skip over some positions?

Amount of skipping is 
called the stride

Some people think that 
strided convolutions are just 
as good as conv + pooling



Examples of convolutional neural networks



AlexNet [Krizhevsky et al. 2012]

Why is this model important?

➢ “Classic” medium-depth convolutional network 
design (a bit like a modernized version of LeNet)

➢ Widely known for being the first neural network to
attain state-of-the-art results on the ImageNet
large-scale visual recognition challenge (ILSVRC)

ILSVRC (ImageNet), 2009: 1.5 million images

1000 categories



AlexNet [Krizhevsky et al. 2012]

trained on two GPUs, hence 
why the diagram is “split”

… we don’t worry about this 
sort of thing these days

h
ei

gh
t:

 2
2

4

depth: 3

CONV1: 11x11x96

Stride 4

depth: 96

h
ei

gh
t:

 5
5

ReLU activation

3x3x96

h
ei

gh
t:

 2
7

depth: 96POOL1: 3x3

Stride 2 pooling w/ overlapping regions

Pop quiz: how many parameters in CONV1?

Weights: 11x11x3x96 = 34,848

Biases: 96

Total: 34,944



AlexNet [Krizhevsky et al. 2012]

trained on two GPUs, hence 
why the diagram is “split”

… we don’t worry about this 
sort of thing these days

CONV1: 11x11x96, Stride 4, maps 224x224x3 -> 55x55x96 [without zero padding]
POOL1: 3x3x96, Stride 2, maps 55x55x96 -> 27x27x96
NORM1: Local normalization layer [not widely used anymore, but we’ll talk about normalization later]
CONV2: 5x5x256, Stride 1, maps 27x27x96 -> 27x27x256 [with zero padding]
POOL2: 3x3x256, Stride 2, maps 27x27x256 -> 13x13x256
NORM2: Local normalization layer
CONV3: 3x3x384, Stride 1, maps 13x13x256 -> 13x13x384 [with zero padding]
CONV4: 3x3x384, Stride 1, maps 13x13x384 -> 13x13x384 [with zero padding]
CONV5: 3x3x256, Stride 1, maps 13x13x256 -> 13x13x256 [with zero padding]
POOL3: 3x3x256, Stride 2, maps 13x13x256 -> 6x6x256
FC6: 6x6x256 -> 9,216 -> 4,096 [matrix is 4,096 x 9,216]
FC7: 4,096 -> 4,096
FC8: 4,096 -> 1,000
SOFTMAX



AlexNet [Krizhevsky et al. 2012]

CONV1: 11x11x96, Stride 4, maps 224x224x3 -> 55x55x96 [without zero padding]
POOL1: 3x3x96, Stride 2, maps 55x55x96 -> 27x27x96
NORM1: Local normalization layer
CONV2: 5x5x256, Stride 1, maps 27x27x96 -> 27x27x256 [with zero padding]
POOL2: 3x3x256, Stride 2, maps 27x27x256 -> 13x13x256
NORM2: Local normalization layer
CONV3: 3x3x384, Stride 1, maps 13x13x256 -> 13x13x384 [with zero padding]
CONV4: 3x3x384, Stride 1, maps 13x13x384 -> 13x13x384 [with zero padding]
CONV5: 3x3x256, Stride 1, maps 13x13x256 -> 13x13x256 [with zero padding]
POOL3: 3x3x256, Stride 2, maps 13x13x256 -> 6x6x256
FC6: 6x6x256 -> 9,216 -> 4,096 [matrix is 4,096 x 9,216]
FC7: 4,096 -> 4,096
FC8: 4,096 -> 1,000
SOFTMAX

➢ Don’t forget: ReLU nonlinearities after every CONV 
or FC layer (except the last one!)

➢ Trained with regularization (we’ll learn about
these later):
➢ Data augmentation
➢ Dropout

➢ Local normalization (not used much anymore, but
there are other types of normalization we do use)



VGG

Why is this model important?

➢ Still often used today
➢ Big increase in depth over previous best model
➢ Start seeing “homogenous” stacks of multiple 

convolutions interspersed with resolution reduction



VGG
CONV: 3x3x64, maps 224x224x3 -> 224x224x64
CONV: 3x3x64, maps 224x224x64 -> 224x224x64
POOL: 2x2, maps 224x224x64 -> 112x112x64
CONV: 3x3x128, maps 112x112x64 -> 112x112x128
CONV: 3x3x128, maps 112x112x128 -> 112x112x128
POOL: 2x2, maps 112x112x128 -> 56x56x128
CONV: 3x3x256, maps 56x56x128 -> 56x56x256
CONV: 3x3x256, maps 56x56x256 -> 56x56x256
CONV: 3x3x256, maps 56x56x256 -> 56x56x256
POOL: 2x2, maps 56x56x256 -> 28x28x256
CONV: 3x3x512, maps 28x28x256 -> 28x28x512
CONV: 3x3x512, maps 28x28x512 -> 28x28x512
CONV: 3x3x512, maps 28x28x512 -> 28x28x512
POOL: 2x2, maps 28x28x512 -> 14x14x512
CONV: 3x3x512, maps 14x14x512 -> 14x14x512
CONV: 3x3x512, maps 14x14x512 -> 14x14x512
CONV: 3x3x512, maps 14x14x512 -> 14x14x512
POOL: 2x2, maps 14x14x512 -> 7x7x512
FC: 7x7x512 -> 25,088 -> 4,096
FC: 4,096 -> 4,096
FC: 4,096 -> 1,000
SOFTMAX

➢ More layers = more processing, which is 
why we see repeated blocks

➢ Which parts use the most memory?
➢ Which parts have the most parameters?

almost all parameters are here



ResNet 152 layers!

don’t bother with huge FC layer at 
the end, just average pool over all
positions and have one linear layer

small 18-layer prototype (ResNet-18)

Images from He et al., and others



ResNet

Images from He et al., and others



What’s the main idea?

Images from He et al., and others

Why is this a good idea?



Why are deep networks hard to train?

If we multiply many many numbers together, what will we get?

If most of the numbers are < 1, we get 0

If most of the numbers are > 1, we get infinity

We only get a reasonable answer if the numbers are all close to 1!



So why is this a good idea?

Images from He et al., and others

If weights are not too big, 
this will be small(ish)



ResNet
➢ “Generic” blocks with many layers, interspersed with a few 

pooling operations
➢ No giant FC layer at the end, just mean pool over all x/y 

positions and a small(ish) FC layer to go into the softmax
➢ Residual layers to provide for good gradient flow


