Getting Neural Nets to Train

Designing, Visualizing and Understanding Deep Neural Networks

CSW182/282A

Instructor: Sergey Levine
UC Berkeley

This lecture

Help! My network doesn’t train » Normalizing inputs and outputs
» Normalizing activations (batch normalization)
If you follow everything | described in the previous lectures... > Initialization of weight matrices & bias vectors

» Gradient clipping
» Best practices for hyperparameter optimization

And you train everything for a long time... » Ensembling, dropout

And you implement everything correctly...

There is a good chance it still won’t work
Neural networks are messy

They require lots of “tricks” to train well

We’ll discuss these tricks today

The dangers of big inputs, activations, and outputs

DI I

e 0) e (=)
2x1 W(l)b(l) 3x1 3x1 W(Q) b(z)

15t dimension

“hard” cas‘/ is way bigger

I A A A

Dﬂ HD HH Hﬂ Why? = Hﬂ - Hg

“easy” case

L1I9 L1 L1I9 L1 L1 L1 L1I9 L1I9

The dangers of big inputs, activations, and outputs

(gradient will get scaled by big x values
mme RelU
L dz(l) I—.—I - Iim

dW (1) dW(l) dz(l) linear linear (2))
layer layer
\ 2x1 W(l)b(l) 3X1 W(Q) b(2)
A

“easy” case

il L W (s

L1I9 L1 L1I9 L1

“hard” case

L Hﬂ - HCI

L1 L1 L1I9 L1I9

The dangers of big inputs, activations, and outputs

“easy” case “hard” case

))))))))

ac dzM dC
AW dw® dz(1)

oxt

The dangers of big inputs, activations, and outputs

In general...

we really want all entries in x to be roughly on the same scale

&
(o] E
=

sometimes not a problem:

Ug
-‘s n—!|®o
‘@@ (=)

images: all pixels are roughly in [0, 1] or {0,...,255}

dd
Ll
w
4
[
w
w
w
w
w

w

w

)

l lI IlllIIlllIlIl)
Il W IIIIIII) i
b UL m

discrete inputs (e.g., NLP): all inputs are one-hot (zero or one) B

‘os@
‘@n—-o--

sometimes a huge problem:
forecasting the weather?
temperature: somewhere 40-1007
humidity: somewhere 0.3 - 0.67

etc.

The dangers of big inputs, activations, and outputs

and outputs! (if doing regression)

?
What can we do: ...and activations??

Standardization: transform inputs so they have y =0, 0 =1

To make p = 0: z; = z; — E[z] Elz] = % Zf;l T

all operations are per-dimension

x; —E[x]
V/ El(z;—E[z])2] <—— standard deviation

To also make o0 = 1: T; =

Standardizing activations?

and outputs! (if doing regression)

?
What can we do- ...and activations??

Standardization: transform inputs so they have y =0, 0 =1

==

linear (2)
layer)

3x1

/ W@ b<2)

what if we start getting really different scales for each dimension here?

can we just standardize these activations too?

basically yes, but now the mean and standard deviation changes during training...

Standardizing activations?

Basic idea:

ngl) — W(l).’L’i T p(L)

=i p=

linear (2)
layer)

3x1

1 3
1D = = Z agl) w2 b(Z)
! \ these depend on W) and b

— need to recompute them every gradient step!

This seems very expensive, since we don’t want to
evaluate all points in the dataset every gradient step

Batch normalization (basic version)

Basic idea: This seems very expensive, since we don’t want to

evaluate all points in the dataset every gradient step

Zﬁl) — W(l)xi T p(L)

a,gl) = ReLU(zZ(l))

N 1) 1 B) —_
1) _ N0 W& Ly g0
H m H B : azj

i=1 j=1 compute mean and
— std only over the
current batch

Batch normalization (real version)

Basic idea: This seems very expensive, since we don’t want to

evaluate all points in the dataset every gradient step

Zi(l) — W(l)m%_ T p(L)
a,gl) = ReLU(zgl))
N 1 B -
1 1
= R i~ g3
; j=1 compute mean and

— std only over the
current batch

oV x| 5D (@) -)2
g=1 -
) (1) (1) (1)
a; a:
agl): i (M a§1): i (l)u ~+ B
% o T /
27:(2) = W(Q)d,gl) + b2 learnable scale and bias

~(1)

i

etc... same dim as

Batch normalization “layer”

1 |

linear linear (2)
layer layer
2x1 Wu)b(l) 51 W(2)b<2)
B 1) _
1 1 _(1) _ 4 —H
0 5> a%d S -y Al =t

Jj=1

How to train?

Just use backpropagation!

Exercise: figure out the derivatives w.r.t. parameters and input!

Where to put back normalization?

NI

linear linear (2)
layer layer)
2x1 W(l)b(l) 3X1 3X1 W(2) b(2)
I—.—I Re LU \I‘._I—’IHHHEH_’
linear linear (2))
layer layer

2x1 3x1 3x1

WD) e b<z>

Where to put back normalization?

» Scale and bias seemingly should
be subsumed by next linear layer?
» All ReLU outputs are positive

» The “classic” version
BN RelLU » Just appears to be a transformation
on the preceding linear layer?

No one seems to agree on what the right way to do it is, try a
few options and see what works (but both often work)

A few considerations about batch norm

1 B 0 Q) (1) M(l)
1 1) ~ a:’ =
ORS Za(N = > (a;) — pM)? a, T8
j=1
linear linear (2)
layer layer)
» Often we can use a larger learning rate with M
batch norm 0ol o7
» Models with batch norm can train much faster R
. . . I
> Generally requires less regularization (e.g., 08[1 [T Wi BN
doesn’t need dropout) |' ——— With BN

: : 0.7
» Very good idea in many cases 10K 20K 30K 40K 50K

Weight initialization

General themes

@pj=

X linear Z(l) linear (2)
layer layer
X1 (1) 3X 31 W b(z)

» We want the overall scale of activations in the network not to be too big or too
small for our initial (randomized) weights, so that the gradients propagate well

» Basic initialization methods: ensure that activations are on a reasonable scale,
and the scale of activations doesn’t grow or shrink in later layers as we increase
the number of layers

» More advanced initialization methods: try to do something about eigenvalues of

Jacobians
drl dz(l) da(l) dZ(2) dLl If we multiply many many numbers together, what will we get?
dW (1) B AW) dz1) da(1) dz(2) If most of the numbers are < 1, we get 0
dr drl If most of the numbers are > 1, we get infinity
o= Ji1JaJs ... Jn—(n)
dW dz We only get a reasonable answer if the numbers are all close to 1!

Basic initialization

Simple choice: Gaussian random weights

W) ~ N(0,0.0001)

input layer had mean 6.6868927 and std 8.998388 Idea”y We COUId _/

hidden layer 1 had mean -8.800117 and std ©.213081 . e el e .

hidden layer 2 had mean -0.000001 and std ©.847551 I r]
hidden layer 3 had mean -0.000002 and std 0.010630 jUSt Inltla IZe el"e
hidden layer 4 had mean 0.000001 and std 0.002378

hidden layer S had mean 0.000002 and std 0.000532
hidden layer 6 had mean -0.000000 and std ©.000119

hidden layer 7 had mean 6.860000 and =td ©.000026 But We have no idea Where that is!

hidden layer 8 had mean -8.800000 and std ©.0080006
hidden layer 9 had mean 0.600000 and std ©.000001
hidden layer 10 had mean -0.000000 and std ©.080000

Goal is not to start at a good solution, but to
Pada e have well-behaved gradients & activations

dL dz) dL in)T
— - = ~—— = da
dW @) dW @) dz()

Why is this bad?

Image from: Fei-Fei Li & Andrej Karpathy

Basic initialization

Wi ~N(0,0 W) reasonable choice!

if we standardize x, then

linear

layer T ~ N(O, 1)
W b

what is (roughly) the magnitude of z;?

2 = ZWZJaJ oy im0 assume a; ~ N (0,0,)

everything is (roughly) 0-mean

B 5 9 if D,o%, > 1, magnitude grows with each layer!
E[z] Z EW E [a = Daoyoy
/ if Dyo%, < 1, magnitude shrinks with each layer!

dimensionality of a what if we choose O'%V =1/D,?

Basic initialization

if Dyo%, > 1, magnitude grows with each layer!

Zj: ! ! /‘ ’ if Dyo%, < 1, magnitude shrinks with each layer!

dimensionality of a what if we choose J?/V =1/D,?

basic principle: get std of W;; to be about 1/4/D, this sometimes referred to as “Xavier initialization”

input layer had sean 0.601809 and std 1.0€1311

hidden layer 1 had sean ©.891198 and std 6.627953
° and std 5505

and std 0

and std
and std @
and std
and std
and std
361 and std ©.239206
9139 and std 9.228088

I—Itt | e d eta | ‘ . Re I—U S This was all without nonlinearities!

E[zf] = Z E[WZZJ]E[CL?] = D,oiy 0> problem: a; = ReLU(z,)
J

. . . (44 . 9 _ . . . '
basic principle: get std of W;; to be about 1/v/D, negative halt” of 0-mean activations is removed!
variance is cut in half!

. .
ingut Layer had nean 0.000501 and std 0,995444 might not seem like much...
hidden layer 1 had mean 0.398623 and sto 0.582273

hidden layer 2 had mean 0.272352 and std 0.403795

hidden layer 3 had mean 0.186076 and std 0.276912 b H dd

hidden layer 4 had sean ©.136442 and std ©.198685 ut It a S up!

hidden layer S had sean 6.6935%68 and std ©.148299

hidden layer & had sean ©.972234 and std ©.183288

hidden layer 7 had mcan ©.843775 and std ©.872748

hidden layer 8 had mean ©.835138 and std 8.851572

hidden layer 9 had mean 0.825464 and std ©.938583

hidden layer 10 had wean 0.018408 and std 0.026076

A A S | Image from: Fei-Fei Li & Andrej Karpathy

I—Itt | e d eta | ‘ . Re I—U S This was all without nonlinearities!

E[zf] = Z E[WZZJ]E[CL?] = D,oiy 0> problem: a; = ReLU(z,)
J

. . . (44 . 9 _ . . . '
basic principle: get std of W;; to be about W negative haltf” of 0-mean activations is removed!
variance is cut in half!

input layer had mean 0.008501 and std 0,999444 1/ § Da

hidden layer 1 had mean 8.562488 and std 6.825232
hidden layer 2 had mean 8,553614 and std 8,827835
hidden layer 3 had mean 9.545867 and std 8.813855

3
B Lo ¥ od s s o ¢ e proposed by He et al. for ResNet

might not seem like much...

hidden layer & had mean 8,587183 and std 6,86083%
hidden layer 7 had mean 0.596867 and std 0.876610

e I makes big difference 150+ layers...

hidden layer 16 had mean B8,552531 and std 6,844523

e e e e Image from: Fei-Fei Li & Andrej Karpathy

Littler detail: ReLUs & biases

Wij ~ J\[(():CTQ)
IH ‘ v problem: a; = ReLU(z;)
a <D

linear Z
layer

W b

half of our units (on average) will be “dead”!

often initialize b; = 0.1 (or small constant)

L/

v

Advanced initialization

dL dz) da®) dz(2) 4r 1f we multiply many many numbers together, what will we get?

dW (1) - dW) dz(1) da1) dz(2) If most of the numbers are < 1, we get 0

dLl dLl If most of the numbers are > 1, we get infinity

oy = Sdeds . Jn s

dz(”) We only get a reasonable answer if the numbers are all close to 1!

for each J;, we can write: J; = U;A;V; e.g., using singular value decomposition

/}agonal matrix with same eigenvalues as J;

scale-preserving transformations
(i.e., orthonormal bases)

v

v

»

initial a U, A, Vi

Advanced initialization

dL dz) da®) dz(2) 4r 1f we multiply many many numbers together, what will we get?
dW (1) dW) dz(1) da1) dz(2) If most of the numbers are < 1, we get 0

dLl dLl If most of the numbers are > 1, we get infinity
gr—— J1Jods .. S ——
dW() dz(”) We only get a reasonable answer if the numbers are all close to 1!
for each W) we can write: W@ — @ A @/ e.g., using singular value decomposition

W U(i)vzi)\ just need to force this to be identity matrix

even simpler:

a = get_rng().normal(@.8, 1.8, flat_shape) < arbitrary random matrix (doesn’t really matter how)

u, _, v = np.linalg.svd{a, full_matrices=False)

p¥€k the one with the correct shape
g = u if u.shape == flat_shape else v < needed if non-square

guaranteed orthonormal

https://github.com/Lasagne/Lasagne

Last bit: Gradient clipping

what we hope happens:

what actually happens:
because deep learning, that’s why

S @ >

» Took a step that was too big in the wrong place

» Something got divided by something small (e.g., in
batch norm, softmax, etc.)

» Just got really unlucky

Clipping the monster gradients

per-element clipping: norm clipping:
gi < max(min(g;, ¢;), —¢;) g min(||g|/, ¢)
gi ~— 9
gl

how to choose ¢?

run a few epochs (assuming it doesn’t explode)

see what “healthy” magnitudes look like

Ensembles & dropout

What it my model makes a mistake?

Problem: neural networks have many parameters, often have high variance

Not nearly as high as we would expect from basic learning theory
(i.e., overfitting is usually not catastrophic), but still...

Interesting idea: when we have multiple high-variance learners, maybe
they’ll agree on the right answer, but disagree on the wrong answer

Said another way: there are many more ways to be wrong than to be right

v

Ensembles in theory

Variance = EDmp(D)[HfD(x) — JF(CU)H2]
f(@) = Epp(m)|fp(2 AZZfD

\ =

can we actually estimate this thing? where do we get M different datasets??

Can we cook up multiple independent datasets from a single one?
overlapping but independently sampled

Simple approach: just chop a big dataset into M-ren-evertappine parts
D = {(zi,y:)} /

turns out we actually don’t need this!

for each D; pick N indices randomly in {1,.... N} ij1,...i; N

Dj — {('l:ij,17y?:j,1)($ij,27 y’ij,z)v ey (:Cij,Nayij,N)}

Ensembles in theory

D = {(zi,y:)}
for each D; pick N indices randomly in {1,.... N} i;1,...¢; N
Dj — {(l:ij,lﬁy?:j,l)(xij,27yij,2)7 ey (xij,vaij,N)}

This is called resampling with replacement

D I1| T2 I3

Dy R . 2 VT e 3 VT 3
LI] L Y L)

D, T MES e 3 YT 1 NTe 3
“e (W'} (W'}

train separate models on each D;

Ensembles in theory

D = {(zi,9i)}

for each D; pick N indices randomly in {1,.... N} i;1,...¢; N

Dj — {('l:ij,17y?:j,1)($ij,29 yij,Q)v ey (xij,N) yij,N)}
train separate models on each D;

Po, (y|$)7 ey PO (y’.ﬂl?)

how do we predict?

principled approach: average the probabilities:

p(ylz) = Zpa (ylz)

simple approach: majority vote

Ensembles in practice

There is already a lot of randomness in neural network training

» Random initialization
» Random minibatch shuffling
» Stochastic gradient descent

In practice we get much of the same benefit without resampling

train M models py, (y|z) on the same D

p(y|lx) = Zpg (y|x) or majority vote

Even faster ensembles

image
conv-64

conv-64

maxpool

conv-128
conv-128
maxpool

conv-256
conv-256

maxpool

conv-512
conv-512

maxpool

conv-512
conv-512

FC-4096
FC-4096
FC-1000
softmax

image
conv-64
conv-64
maxpoo!
conv-128
features (somewhat =
task-agnostic) m2p2el . share the features
conv-256 .
— often the most wmase Torall models in the
expensive part o ensemble
conv-512
conv-512 separate ensemble
r. mepoc of classifier “heads”
task-specific conv-512
. e . conv-512
classification layers 8
I/ l 1
FC-4096 FC-4096 FC-4096 FC-4096 FC-4096 FC-4096 FC-4096 FC-4096 FC-4096
FC-4096 FC-4096 FC-4096 FC-4096 FC-4096 FC-4096 FC-4096 FC-4096 FC-4096
FC-1000 FC-1000 FC-1000 FC-1000 FC-1000 FC-1000 FC-1000 FC-1000 FC-1000
softmax softmax softmax softmax softmax softmax softmax softmax softmax

Fven fasterer ensembles

snapshot ensembles:

save out parameter snapshots over the
course of SGD optimization, use each
snapshot as a model in the ensemble

advantage: don’t need to have a bunch
of separate training runs

...but need to set things up carefully so
that the snapshots are actually different

combining predictions: could average
probabilities or vote, or just average the
parameter vectors together

Training loss

05y Single Model
a+] Standard LR Schedule 17
FAT A

Huang et al., Snapshot Ensembles: Train 1, Get M For Free

Cifar1l0 (L=100 k=24, B=300 epochs)

“*Y Snapshot Ensemble
e4 4 Cyclic LR Schedule W\

= Standard Ir scheduling

—— (Cosine annealing with restart Ir 0.1
| | | | |
1 | | | |

1 |
Modes | Mol 1 Moded I Mode I Modes I Mode
1 2 3 4 5 8

] S0 100 1530 200 250

Epochs

00

Some comparisons

Baseline (10 epochs)

True ensemble of 10 models
True ensemble of 10 models
Snapshots (25) over 10 epochs
Snapshots (25) over 10 epochs
Snapshots (25) over 10 epochs

Single model
Average predictions
Voting

Average predictions
Voting

Parameter averaging

your mileage may vary

0.837
0.855
0.851
0.865
0.861
0.864

Really really big ensembles?

The bigger the ensemble is, the better it works (usually)
But making huge ensembles is expensive

Can we make multiple models out of a single neural network?
Dropout

randomly set some activations to zero in the forward pass

“new” network made

/ out of the old one

(a) Standard Neural Net (b) After applying dropout.

p=206>5#

Dropout

" X contains the data """

randomly set some activations to zero in the forward pass H1 = np.maximum(0, np.dot(Wl, X) + bl)

Ul = np.random.rand(*Hl.shape) < p # 7irst
H1 *= Ul # ¢

H2 = np.maximum(©, np.dot(W2, H1l) + b2)
U2 = np.random.rand(*H2.shape) < p #

H2 *= U2 # dro;

out = np.dot(W3, H2) + b3

Andrej Karpathy

(a) Standard Neural Net (b) After applying dropout.

Implementation:

for each a,g-i), set it to a

Mjj ~ Bernoulli(0.5) 1.0 with probability 50%, 0.0 otherwise

()

g Mg

Dropout

randomly set some activations to zero in the forward pass

Forces the network to have a redundant representation.

~
(J-—h has an ear
Q—F has a tail K

C} » is furry —*———p cat score

(}-—h has claws —
(— mischievous 4—/'
(a) Standard Neural Net (b) After applying dropout. — look

How could this possibly work?
Can think of every dropout mask as defining a different model
Hence this looks like a huge ensemble

How huge?

p=0.:

At test time... o

Hl = np.maximum({O, np.dot(wl, X) + bl)
Ul = (np.random,rand(*Hl.shape) < p) / p
H1 *= Ul

HZ = np.maximum{8, np.dot{w2, H1l) + b2)
U2 = (np.random.rand(*H2.shape) < p) / p

During training: M2 *= U2

out = np.dot(W3, H2) + b3

for each a(-i), set it to a(i)mij

j J / test time is unchanged!
def predictiX):

m’&j ~J Bern0u111(0.5) H1l = np.maximum(O8, np.dot(wWl, X) + bl)
H2 = np.maximum(8, np.dot(wW2, H1) + b2)
out = np.dot(W3, H2) + b3

Andrej Karpathy

At test time: want to combine all the models
could just generate many dropout masks
what if we stop dropping out at test time?
before: on average % of dimensions are forced to 0

now: none of them are, so W a9 will be ~ 2x bigger

solution: W) = %W(i) (divide all weights by 21!)

Hyperparameters

» With all these tricks, we have a lot of hyperparameters
» Some of these affect optimization (training)
= Learning rate
= Momentum
Initialization
= Batch normalization loss
» Some of these affect generalization (validation)
= Ensembling
= Dropout

low learning rate

= Architecture (# and size of layers)

good learning rate

high learning rate

» How do we pick these?
* Recognize which is which: this can really matter!
* Bad learning rate, momentum, initialization etc.
shows up very early on in the training process
» Effect of architecture usually only apparent after
training is done
* Coarse to fine: start with broad sweep, then zero in
* Consider random hyperparameter search instead of grid

epoch

Unimportant parameter

max_count = 168

for count in xrange(max_count):
reg = 18**uniform(-5, 5)

) €

1r = 18**uniform(-3,

Example: short (5 epoch) log-space LR & weight decay sweep

note it's best to optimize

trainer = ClassifierTrainer()
model = init two layer model(32%32%3, 58, 18) # input size, hidden size
trainer = ClassifierTrainer()
best model local, stats = trainer.train(X train, y train, X val, y val,

model, two layer net,
num_epochs=5, reg=reqg,

in log space!

update='momentum', learning rate decay=9.9,

sample batches = True, batch size = 108,
learning rate=lr, verbose=False)

Andrej Karpathy

[val acc: 8.412000,

lr:

1.405206e-04, reg: 4.793564e-61,

(1/ 160) |

val acc: 8.214008,
val acc: 0.208000,
val acc: 6.1966000,
val acc: 0.079000,
val acc: 0.223000,

ir
r

lr:

lr
r

: 7.231888e-06, reg: 2.321281e-04,
: 2.119571e-66, reg: 8.011857e+01,
1.551131e-05, reg: 4.374936e-05,
: 1.753300e-05, reg: 1.200424e+03,
: 4.215128e-05, req: 4.196174e+01,

(2 / 100)
(3 / 100)
(4 / 100)
(5 / 160)
(6 / 160)

[val acc: 6.441000,

lr

: 1,750259-04, reg: 2.116807e-064,

(7 / 160)

nice val acc: 0,241000,

ir

. 0.749231e-05, req: 4.226413e+01,

(877 1060)

— | val acc: 0.482600,

ir

: 4.296863e-04, reg: 6.642555e-01,

(9 / 160) |

val acc: 0.0790609,
val acc: 8.154000,

max_count = 100

ir
1r

: 5.401602e-66, reg: 1.599828e+04,
: 1.618508e-06, reg: 4.925252e-61,

adjust range

for count in xrange(max count)

reg = 18**uniform(-5, 5)

1r = 18**uniform(-3, -6)

Grid Layout

Important parameter

Unimportant parameter

Random Layout

Important parameter

>

(16 / 166)
(11 / 166)

max_count = 108

for count in xrange(max count):
reg = 10**uniform(-4, 0)
lr = 16**uniform(-3, -4)

