
Getting Neural Nets to Train
Designing, Visualizing and Understanding Deep Neural Networks

CS W182/282A

Instructor: Sergey Levine
UC Berkeley



This lecture
Help! My network doesn’t train

If you follow everything I described in the previous lectures…

And you implement everything correctly…

And you train everything for a long time…

There is a good chance it still won’t work

Neural networks are messy

They require lots of “tricks” to train well

We’ll discuss these tricks today

➢ Normalizing inputs and outputs
➢ Normalizing activations (batch normalization)
➢ Initialization of weight matrices & bias vectors
➢ Gradient clipping
➢ Best practices for hyperparameter optimization
➢ Ensembling, dropout



The dangers of big inputs, activations, and outputs

2x1 3x1

linear
layer

ReLU

3x1

linear
layer

softmax
cross-ent

loss

“easy” case “hard” case
1st dimension 
is way bigger

Why?



The dangers of big inputs, activations, and outputs

2x1 3x1

linear
layer

ReLU

3x1

linear
layer

softmax
cross-ent

loss

“easy” case “hard” case

gradient will get scaled by big x values



The dangers of big inputs, activations, and outputs

“easy” case “hard” case



The dangers of big inputs, activations, and outputs

In general…



The dangers of big inputs, activations, and outputs

What can we do?

standard deviation

and outputs! (if doing regression)

…and activations??

all operations are per-dimension



Standardizing activations?

What can we do?
and outputs! (if doing regression)

…and activations??

2x1 3x1

linear
layer

ReLU

3x1

linear
layer

softmax
cross-ent

loss

what if we start getting really different scales for each dimension here?

can we just standardize these activations too?

basically yes, but now the mean and standard deviation changes during training…



Standardizing activations?

2x1 3x1

linear
layer

ReLU

3x1

linear
layer

softmax
cross-ent

loss

etc…

This seems very expensive, since we don’t want to 
evaluate all points in the dataset every gradient step



Batch normalization (basic version)

etc…

This seems very expensive, since we don’t want to 
evaluate all points in the dataset every gradient step

compute mean and 
std only over the 
current batch



Batch normalization (real version)

etc…

This seems very expensive, since we don’t want to 
evaluate all points in the dataset every gradient step

compute mean and 
std only over the 
current batch



Batch normalization “layer”

2x1 3x1

linear
layer

ReLU

3x1

linear
layer

softmax
cross-ent

loss
BN

How to train?

Just use backpropagation!

Exercise: figure out the derivatives w.r.t. parameters and input!



Where to put back normalization?

2x1 3x1

linear
layer

ReLU

3x1

linear
layer

softmax
cross-ent

loss
BN

2x1 3x1

linear
layer

ReLU

3x1

linear
layer

softmax
cross-ent

loss
BN



Where to put back normalization?

ReLU BN

ReLUBN

➢ Scale and bias seemingly should 
be subsumed by next linear layer?

➢ All ReLU outputs are positive

➢ The “classic” version
➢ Just appears to be a transformation 

on the preceding linear layer?

No one seems to agree on what the right way to do it is, try a 
few options and see what works (but both often work)



A few considerations about batch norm

➢ Often we can use a larger learning rate with 
batch norm

➢ Models with batch norm can train much faster
➢ Generally requires less regularization (e.g., 

doesn’t need dropout)
➢ Very good idea in many cases

2x1 3x1

linear
layer

ReLU

3x1

linear
layer

softmax
cross-ent

loss
BN



Weight initialization



General themes

➢ We want the overall scale of activations in the network not to be too big or too 
small for our initial (randomized) weights, so that the gradients propagate well

➢ Basic initialization methods: ensure that activations are on a reasonable scale, 
and the scale of activations doesn’t grow or shrink in later layers as we increase 
the number of layers

➢ More advanced initialization methods: try to do something about eigenvalues of 
Jacobians

If we multiply many many numbers together, what will we get?

If most of the numbers are < 1, we get 0

If most of the numbers are > 1, we get infinity

We only get a reasonable answer if the numbers are all close to 1!

2x1 3x1

linear
layer

ReLU

3x1

linear
layer

softmax
cross-ent

loss



Basic initialization

Image from: Fei-Fei Li & Andrej Karpathy

Ideally we could 
just initialize here

But we have no idea where that is!

Goal is not to start at a good solution, but to 
have well-behaved gradients & activations

Why is this bad?



Basic initialization

linear
layer



Basic initialization

Image from: Fei-Fei Li & Andrej Karpathy



Little detail: ReLUs

Image from: Fei-Fei Li & Andrej Karpathy

might not seem like much…

but it adds up!

This was all without nonlinearities!



Little detail: ReLUs

Image from: Fei-Fei Li & Andrej Karpathy

might not seem like much…

proposed by He et al. for ResNet

makes big difference 150+ layers…

This was all without nonlinearities!



Littler detail: ReLUs & biases

linear
layer

half of our units (on average) will be “dead”!



Advanced initialization

If we multiply many many numbers together, what will we get?

If most of the numbers are < 1, we get 0

If most of the numbers are > 1, we get infinity

We only get a reasonable answer if the numbers are all close to 1!

e.g., using singular value decomposition

scale-preserving transformations
(i.e., orthonormal bases)



Advanced initialization

If we multiply many many numbers together, what will we get?

If most of the numbers are < 1, we get 0

If most of the numbers are > 1, we get infinity

We only get a reasonable answer if the numbers are all close to 1!

e.g., using singular value decomposition

https://github.com/Lasagne/Lasagne

arbitrary random matrix (doesn’t really matter how)

guaranteed orthonormal

needed if non-square

even simpler:



Last bit: Gradient clipping
what we hope happens: what actually happens:

because deep learning, that’s why

➢ Took a step that was too big in the wrong place
➢ Something got divided by something small (e.g., in 

batch norm, softmax, etc.)
➢ Just got really unlucky



Clipping the monster gradients



Ensembles & dropout



What if my model makes a mistake?
Problem: neural networks have many parameters, often have high variance

Not nearly as high as we would expect from basic learning theory 
(i.e., overfitting is usually not catastrophic), but still…

Interesting idea: when we have multiple high-variance learners, maybe 
they’ll agree on the right answer, but disagree on the wrong answer

Said another way: there are many more ways to be wrong than to be right



Ensembles in theory

can we actually estimate this thing? where do we get M different datasets??

Can we cook up multiple independent datasets from a single one?

turns out we actually don’t need this!



Ensembles in theory

This is called resampling with replacement

2 3 3

3 1 3



Ensembles in theory



Ensembles in practice
There is already a lot of randomness in neural network training

➢ Random initialization
➢ Random minibatch shuffling
➢ Stochastic gradient descent

In practice we get much of the same benefit without resampling



Even faster ensembles

features (somewhat 
task-agnostic)

often the most
expensive part

task-specific 
classification layers

share the features 
for all models in the 
ensemble

separate ensemble 
of classifier “heads”



Even fasterer ensembles
snapshot ensembles:

Huang et al., Snapshot Ensembles: Train 1, Get M For Free

save out parameter snapshots over the 
course of SGD optimization, use each 
snapshot as a model in the ensemble

advantage: don’t need to have a bunch 
of separate training runs

…but need to set things up carefully so 
that the snapshots are actually different

combining predictions: could average 
probabilities or vote, or just average the 
parameter vectors together



Some comparisons

your mileage may vary



Really really big ensembles?
The bigger the ensemble is, the better it works (usually)

But making huge ensembles is expensive

Can we make multiple models out of a single neural network?

Dropout

randomly set some activations to zero in the forward pass

“new” network made 
out of the old one



Dropout
randomly set some activations to zero in the forward pass

Implementation:

1.0 with probability 50%, 0.0 otherwise

Andrej Karpathy



Dropout
randomly set some activations to zero in the forward pass

How could this possibly work?

Can think of every dropout mask as defining a different model

Hence this looks like a huge ensemble

How huge?



At test time…
During training:

At test time: want to combine all the models

could just generate many dropout masks

what if we stop dropping out at test time?

(divide all weights by 2!)

Andrej Karpathy



Hyperparameters
➢ With all these tricks, we have a lot of hyperparameters
➢ Some of these affect optimization (training)

▪ Learning rate
▪ Momentum
▪ Initialization
▪ Batch normalization

➢ Some of these affect generalization (validation)
▪ Ensembling
▪ Dropout
▪ Architecture (# and size of layers)

➢ How do we pick these?
• Recognize which is which: this can really matter!

• Bad learning rate, momentum, initialization etc. 
shows up very early on in the training process

• Effect of architecture usually only apparent after 
training is done

• Coarse to fine: start with broad sweep, then zero in
• Consider random hyperparameter search instead of grid

Example: short (5 epoch) log-space LR & weight decay sweep

Andrej Karpathy


